How do I find a column number for a cell containing a value

Hi,
    I have a range of cells A1:CZ1 all of which have different values.  I 
need to find the column number for a cell that contains a certain value.
I know I can use cells.find which returns the value rather than the cell 
reference, and I have seen other posts in this group to return a number when 
the cell is known range(ColAddress).cells(1,1).column

I can easily put this in a simple loop but I was wondering if there was a 
smarter way that could do it in one line using built-in functions.  If it 
was a loop it would have to be processed many times for the different values 
I need to lookup slowing things down quite a bit.

Thanks 

0
Gilgamesh
3/4/2010 12:21:36 AM
excel.programming 6508 articles. 2 followers. Follow

9 Replies
856 Views

Similar Articles

[PageSpeed] 0

mycolumn=application.match(myvalue,range("a1:cz1"),0)

or use vba FIND with
if not mycol is nothing then msgbox mycol.column
-- 
Don Guillett
Microsoft MVP Excel
SalesAid Software
dguillett@gmail.com
"Gilgamesh" <gilgamesh@dont.spam.me> wrote in message 
news:uthPqFzuKHA.4220@TK2MSFTNGP05.phx.gbl...
> Hi,
>    I have a range of cells A1:CZ1 all of which have different values.  I 
> need to find the column number for a cell that contains a certain value.
> I know I can use cells.find which returns the value rather than the cell 
> reference, and I have seen other posts in this group to return a number 
> when the cell is known range(ColAddress).cells(1,1).column
>
> I can easily put this in a simple loop but I was wondering if there was a 
> smarter way that could do it in one line using built-in functions.  If it 
> was a loop it would have to be processed many times for the different 
> values I need to lookup slowing things down quite a bit.
>
> Thanks 

0
Don
3/4/2010 12:54:02 AM
cells.find can be used to return a row/column number or address or any number 
of other properties the cell might have.

   myRow = cells.find(What:="Joe Smith").row
   myCol = cells.find(What:="Joe Smith").column
   myAddr = cells.find(What:="Joe Smith").address


"Gilgamesh" wrote:

> Hi,
>     I have a range of cells A1:CZ1 all of which have different values.  I 
> need to find the column number for a cell that contains a certain value.
> I know I can use cells.find which returns the value rather than the cell 
> reference, and I have seen other posts in this group to return a number when 
> the cell is known range(ColAddress).cells(1,1).column
> 
> I can easily put this in a simple loop but I was wondering if there was a 
> smarter way that could do it in one line using built-in functions.  If it 
> was a loop it would have to be processed many times for the different values 
> I need to lookup slowing things down quite a bit.
> 
> Thanks 
> 
> .
> 
0
Utf
3/4/2010 1:32:02 AM
Hello,
Enter formula in A2:
   =if(a1=value($A$5),$A$5,"")
copy this formula from B2 to CZ1 by dragging.
Enter a number in A5, say 12.
You will see all your entries A1:CZ1 that contain a 12.

Regards,

Gabor Sebo




"Gilgamesh" <gilgamesh@dont.spam.me> wrote in message 
news:uthPqFzuKHA.4220@TK2MSFTNGP05.phx.gbl...
> Hi,
>    I have a range of cells A1:CZ1 all of which have different values.  I 
> need to find the column number for a cell that contains a certain value.
> I know I can use cells.find which returns the value rather than the cell 
> reference, and I have seen other posts in this group to return a number 
> when the cell is known range(ColAddress).cells(1,1).column
>
> I can easily put this in a simple loop but I was wondering if there was a 
> smarter way that could do it in one line using built-in functions.  If it 
> was a loop it would have to be processed many times for the different 
> values I need to lookup slowing things down quite a bit.
>
> Thanks
> 

0
helene
3/4/2010 3:01:23 AM
"B Lynn B" <BLynnB@discussions.microsoft.com> wrote in message 
news:C927CA84-B190-4E48-9F3A-3E261A68C188@microsoft.com...
> cells.find can be used to return a row/column number or address or any 
> number
> of other properties the cell might have.
>
>   myRow = cells.find(What:="Joe Smith").row
>   myCol = cells.find(What:="Joe Smith").column
>   myAddr = cells.find(What:="Joe Smith").address

Thank You

>
>
> "Gilgamesh" wrote:
>
>> Hi,
>>     I have a range of cells A1:CZ1 all of which have different values.  I
>> need to find the column number for a cell that contains a certain value.
>> I know I can use cells.find which returns the value rather than the cell
>> reference, and I have seen other posts in this group to return a number 
>> when
>> the cell is known range(ColAddress).cells(1,1).column
>>
>> I can easily put this in a simple loop but I was wondering if there was a
>> smarter way that could do it in one line using built-in functions.  If it
>> was a loop it would have to be processed many times for the different 
>> values
>> I need to lookup slowing things down quite a bit.
>>
>> Thanks
>>
>> .
>>

 

0
Gilgamesh
3/4/2010 6:59:57 AM
This is a multi-part message in MIME format.

------=_NextPart_000_0033_01CABC4E.DC186E20
Content-Type: multipart/alternative;
	boundary="----=_NextPart_001_0034_01CABC4E.DC186E20"


------=_NextPart_001_0034_01CABC4E.DC186E20
Content-Type: text/plain;
	charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable

Hello,
=20
I wrote a VBA program and inserted a:12 in columns 1,6,11,30,92 and 104.
The outputs are the columns for these 12.s:
A,F,K,AD,CN and CZ.
The output is unsophisticated.
=20
best regards,
=20
Gabor Sebo=20
worksheet encl.
"Gilgamesh" <gilgamesh@dont.spam.me> wrote in message =
news:uthPqFzuKHA.4220@TK2MSFTNGP05.phx.gbl...
> Hi,
>    I have a range of cells A1:CZ1 all of which have different values.  =
I=20
> need to find the column number for a cell that contains a certain =
value.
> I know I can use cells.find which returns the value rather than the =
cell=20
> reference, and I have seen other posts in this group to return a =
number when=20
> the cell is known range(ColAddress).cells(1,1).column
>=20
> I can easily put this in a simple loop but I was wondering if there =
was a=20
> smarter way that could do it in one line using built-in functions.  If =
it=20
> was a loop it would have to be processed many times for the different =
values=20
> I need to lookup slowing things down quite a bit.
>=20
> Thanks=20
>=20
>
------=_NextPart_001_0034_01CABC4E.DC186E20
Content-Type: text/html;
	charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META content=3D"text/html; charset=3Diso-8859-1" =
http-equiv=3DContent-Type>
<META name=3DGENERATOR content=3D"MSHTML 8.00.6001.18882">
<STYLE></STYLE>
</HEAD>
<BODY>
<DIV><FONT color=3D#0000ff size=3D2 face=3DArial>Hello,<BR>&nbsp;<BR>I =
wrote a VBA=20
program and inserted a:12 in columns 1,6,11,30,92 and 104.<BR>The =
outputs are=20
the columns for these 12.s:<BR>A,F,K,AD,CN and CZ.<BR>The output is=20
unsophisticated.<BR>&nbsp;<BR>best regards,<BR>&nbsp;<BR>Gabor Sebo=20
<BR>worksheet encl.</FONT></DIV>
<DIV><FONT size=3D2 face=3DArial>"Gilgamesh" &lt;</FONT><A=20
href=3D"mailto:gilgamesh@dont.spam.me"><FONT size=3D2=20
face=3DArial>gilgamesh@dont.spam.me</FONT></A><FONT size=3D2 =
face=3DArial>&gt; wrote=20
in message </FONT><A =
href=3D"news:uthPqFzuKHA.4220@TK2MSFTNGP05.phx.gbl"><FONT=20
size=3D2 =
face=3DArial>news:uthPqFzuKHA.4220@TK2MSFTNGP05.phx.gbl</FONT></A><FONT=20
size=3D2 face=3DArial>...</FONT></DIV><FONT size=3D2 face=3DArial>&gt;=20
Hi,<BR>&gt;&nbsp;&nbsp;&nbsp; I have a range of cells A1:CZ1 all of =
which have=20
different values.&nbsp; I <BR>&gt; need to find the column number for a =
cell=20
that contains a certain value.<BR>&gt; I know I can use cells.find which =
returns=20
the value rather than the cell <BR>&gt; reference, and I have seen other =
posts=20
in this group to return a number when <BR>&gt; the cell is known=20
range(ColAddress).cells(1,1).column<BR>&gt; <BR>&gt; I can easily put =
this in a=20
simple loop but I was wondering if there was a <BR>&gt; smarter way that =
could=20
do it in one line using built-in functions.&nbsp; If it <BR>&gt; was a =
loop it=20
would have to be processed many times for the different values <BR>&gt; =
I need=20
to lookup slowing things down quite a bit.<BR>&gt; <BR>&gt; Thanks =
<BR>&gt;=20
<BR>&gt;</FONT></BODY></HTML>

------=_NextPart_001_0034_01CABC4E.DC186E20--

------=_NextPart_000_0033_01CABC4E.DC186E20
Content-Type: application/vnd.ms-excel.sheet.macroEnabled.12;
	name="identical.xlsm"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
	filename="identical.xlsm"

UEsDBBQABgAIAAAAIQBPAJA+pAEAAFcGAAATANkBW0NvbnRlbnRfVHlwZXNdLnhtbCCi1QEooAAC
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAzFXLTsMwELwj8Q+Rr6h2AQkh1JQDjyMgAR+wtbeNqWNbXlPav2eT0gqkEB7lwCVR
HjszO7O2R+fL2hULTGSDL8WhHIoCvQ7G+lkpHh+uB6eioAzegAseS7FCEufj/b3RwyoiFVztqRRV
zvFMKdIV1kAyRPT8ZRpSDZkf00xF0HOYoToaDk+UDj6jz4PcYIjx6BKn8OxycbXk12slE+tFcbH+
r6EqBcTorIbMQtXCG1nTIEynVqNcTOAuhSfUWajx6Ja7SdZgcQcp30DNpWrpVGZpuL4eShb3BfrH
Ft6YTNDPNQuXLdhBg/I5IeWVQ9qZimJCMFQh5trJNeiGucO3hI5+1tpbMpIrW3OpspF6GPq96/fk
JaT5JIT5N1zheHGpkVtuWpc16BSuPEwccvRg/UZhV9ycEw9EJMUz8w2q/qyxGUqDZhAZElO2uHWn
i5tHremyVU2qvR3trOHjEGzx+zzo0HH8T3Tsvv5+54cGpy8qnp0/9mGL+0UeVEFCc58Tb65/vjG8
x+7TsV0bOiT8uRGb3aKp7lgRqj0Wxq8AAAD//wMAUEsDBBQABgAIAAAAIQC1VTAj9QAAAEwCAAAL
AM4BX3JlbHMvLnJlbHMgosoBKKAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAACMks9OwzAMxu9IvEPk++puSAihpbtMSLshVB7AJO4ftY2jJED3
9oQDgkpj29H2588/W97u5mlUHxxiL07DuihBsTNie9dqeK2fVg+gYiJnaRTHGo4cYVfd3mxfeKSU
m2LX+6iyi4saupT8I2I0HU8UC/HscqWRMFHKYWjRkxmoZdyU5T2Gvx5QLTzVwWoIB3sHqj76PPmy
tzRNb3gv5n1il06MQJ4TO8t25UNmC6nP26iaQstJgxXznNMRyfsiYwOeJtpcT/T/tjhxIkuJ0Ejg
8zzfinNA6+uBLp9oqfi9zjzip4ThTWT4YcHFD1RfAAAA//8DAFBLAwQUAAYACAAAACEAf8l62j8B
AADTBAAAGgAIAXhsL19yZWxzL3dvcmtib29rLnhtbC5yZWxzIKIEASigAAEAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAvJTRToMwFIbvTXwH0nspMJ3GrOxCY7I7o/MBunKgddCSnjrl7W3QlM0w
rog3Tc7f8P/fObRdrb+aOjqARWU0I2mckAi0MIXSFSNv26erOxKh47rgtdHASAdI1vnlxeoFau78
RyhVi5F30ciIdK69pxSFhIZjbFrQfqc0tuHOl7aiLRd7XgHNkmRJ7bEHyU88o03BiN0UPn/btT75
j3ejhDVoShcL01BTlkqMudLDjj9b8w7CeSNuK3CMDFq8U5rQ8eTFmeSRrn7iH434aEC7kebop7F7
lABHFEFC2u8sYj+rczC3c8IIXosHyX3rYSRBmoLI5oQI7Q8QQfqdSDYFk/4zTDoFs5wTBiW3ULw6
6y8hDtM5kadgbmaFcV3t73w4KNjXU/HXc8Y7/5LAkN6XtF/D/6AnT1H+DQAA//8DAFBLAwQUAAYA
CAAAACEA5XxecZ8BAADKAgAADwAAAHhsL3dvcmtib29rLnhtbIxSTY+bMBC9V+p/sHxnAQNJFIWs
SkjUPbSq2uzm7OIhWGtsZDslq6r/fQdosqnaQ0/z9ebx/IbV/blV5AdYJ43OaXwXUQK6MkLqY04f
97tgQYnzXAuujIacvoCj9+v371a9sc/fjXkmSKBdThvvu2UYuqqBlrs704HGSW1syz2W9hi6zgIX
rgHwrQpZFM3ClktNJ4al/R8OU9eygtJUpxa0n0gsKO5Rvmtk5+h6VUsFT9OLCO+6z7xF3WdFieLO
b4X0IHKaYml6+KNhT11xkmqYZtGMErQBpu2fxXy3nSVJGmziDyzYZlEZFGVSBtkuLdO4KDZsm/yi
4fpqyxd7s75vpDv89osSATU/Kb9Hoy460XmWMjYbGAZTnyT07o1sKMn5ILUwPYpb4JFeLtU8o6Qf
JwcpfINMC5YiYOp9BHlsPDbjDLeQPbyhH0+Bnxkj0aNP34bzxHjzIT6gFZjbpcTEPoh4YPgLzW7Q
mF/R7J/o5AaN+RWdjOpGcpRUcVUNFmIYRbBszvChFupPeJScfo03o5jw8huuXwEAAP//AwBQSwME
FAAGAAgAAAAhAOmmJbiCBgAAUxsAABMAAAB4bC90aGVtZS90aGVtZTEueG1s7FlPb9s2FL8P2Hcg
dG9tJ7YbB3WK2LGbrU0bxG6HHmmZllhTokDSSX0b2uOAAcO6YZcBu+0wbCvQArt0nyZbh60D+hX2
SEqyGMtL0gYb1tWHRCJ/fP/f4yN19dqDiKFDIiTlcdurXa56iMQ+H9M4aHt3hv1LGx6SCsdjzHhM
2t6cSO/a1vvvXcWbKiQRQbA+lpu47YVKJZuVivRhGMvLPCExzE24iLCCVxFUxgIfAd2IVdaq1WYl
wjT2UIwjIHt7MqE+QUNN0tvKiPcYvMZK6gGfiYEmTZwVBjue1jRCzmWXCXSIWdsDPmN+NCQPlIcY
lgom2l7V/LzK1tUK3kwXMbVibWFd3/zSdemC8XTN8BTBKGda69dbV3Zy+gbA1DKu1+t1e7WcngFg
3wdNrSxFmvX+Rq2T0SyA7OMy7W61Ua27+AL99SWZW51Op9FKZbFEDcg+1pfwG9VmfXvNwRuQxTeW
8PXOdrfbdPAGZPHNJXz/SqtZd/EGFDIaT5fQ2qH9fko9h0w42y2FbwB8o5rCFyiIhjy6NIsJj9Wq
WIvwfS76ANBAhhWNkZonZIJ9iOIujkaCYs0AbxJcmLFDvlwa0ryQ9AVNVNv7MMGQEQt6r55//+r5
U/Tq+ZPjh8+OH/50/OjR8cMfLS1n4S6Og+LCl99+9ufXH6M/nn7z8vEX5XhZxP/6wye//Px5ORAy
aCHRiy+f/PbsyYuvPv39u8cl8G2BR0X4kEZEolvkCB3wCHQzhnElJyNxvhXDEFNnBQ6Bdgnpngod
4K05ZmW4DnGNd1dA8SgDXp/dd2QdhGKmaAnnG2HkAPc4Zx0uSg1wQ/MqWHg4i4Ny5mJWxB1gfFjG
u4tjx7W9WQJVMwtKx/bdkDhi7jMcKxyQmCik5/iUkBLt7lHq2HWP+oJLPlHoHkUdTEtNMqQjJ5AW
i3ZpBH6Zl+kMrnZss3cXdTgr03qHHLpISAjMSoQfEuaY8TqeKRyVkRziiBUNfhOrsEzIwVz4RVxP
KvB0QBhHvTGRsmzNbQH6Fpx+A0O9KnX7HptHLlIoOi2jeRNzXkTu8Gk3xFFShh3QOCxiP5BTCFGM
9rkqg+9xN0P0O/gBxyvdfZcSx92nF4I7NHBEWgSInpkJ7Uso1E79jWj8d8WYUajGNgbeFeO2tw1b
U1lK7J4owatw/8HCu4Nn8T6BWF/eeN7V3Xd113vr6+6qXD5rtV0UWKi9unmwfbHpkqOVTfKEMjZQ
c0ZuStMnS9gsxn0Y1OvMAZHkh6YkhMe0uDu4QGCzBgmuPqIqHIQ4gR675mkigUxJBxIlXMLZzgyX
0tZ46NOVPRk29JnB1gOJ1R4f2+F1PZwdDXIyZssJzPkzY7SuCZyV2fqVlCio/TrMalqoM3OrGdFM
qXO45SqDD5dVg8HcmtCFIOhdwMpNOKJr1nA2wYyMtd3tBpy5xXjhIl0kQzwmqY+03ss+qhknZbFi
LgMgdkp8pM95p1itwK2lyb4Bt7M4qciuvoJd5r038VIWwQsv6bw9kY4sLiYni9FR22s11hoe8nHS
9iZwrIXHKAGvS934YRbA3ZCvhA37U5PZZPnCm61MMTcJanBTYe2+pLBTBxIh1Q6WoQ0NM5WGAIs1
Jyv/WgPMelEK2Eh/DSnWNyAY/jUpwI6ua8lkQnxVdHZhRNvOvqallM8UEYNwfIRGbCYOMLhfhyro
M6YSbidMRdAvcJWmrW2m3OKcJl3xAsvg7DhmSYjTcqtTNMtkCzd5nMtg3grigW6lshvlzq+KSfkL
UqUYxv8zVfR+AtcF62PtAR9ucgVGOl/bHhcq5FCFkpD6fQGNg6kdEC1wHQvTEFRwn2z+C3Ko/9uc
szRMWsOpTx3QAAkK+5EKBSH7UJZM9J1CrJbuXZYkSwmZiCqIKxMr9ogcEjbUNbCp93YPhRDqppqk
ZcDgTsaf+55m0CjQTU4x35waku+9Ngf+6c7HJjMo5dZh09Bk9s9FLNlV7XqzPNt7i4roiUWbVc+y
ApgVtoJWmvavKcI5t1pbsZY0XmtkwoEXlzWGwbwhSuDSB+k/sP9R4TP7cUJvqEN+ALUVwbcGTQzC
BqL6km08kC6QdnAEjZMdtMGkSVnTpq2Ttlq2WV9wp5vzPWFsLdlZ/H1OY+fNmcvOycWLNHZqYcfW
dmylqcGzJ1MUhibZQcY4xnzVKn544qP74OgduOKfMSVNMMFnJYGh9RyYPIDktxzN0q2/AAAA//8D
AFBLAwQUAAYACAAAACEAwfparSYBAADWAQAAGAAAAHhsL3dvcmtzaGVldHMvc2hlZXQyLnhtbIxR
y07DMBC8I/EP1t6J06JQVCWpkKoKDiDE6+4m68Rq7I3sLYW/x07VCokLt33N7Mxuufqyg/hEHwy5
CmZZDgJdQ61xXQXvb5urWxCBlWvVQA4r+MYAq/ryojyQ34UekUVkcKGCnnlcShmaHq0KGY3oYkeT
t4pj6jsZRo+qnUB2kPM8v5FWGQdHhqX/DwdpbRpcU7O36PhI4nFQHPWH3owB6nLa8OxFtIFPykbV
r0noHGRdtibiklnhUVdwN0vFCfBh8BB+xSI53BLtUuOhrSBPo/LP7GZyGNe1qNV+4Bc63KPpeo7n
LLJFcV6wVqwiw6g6fFS+My6IAXUcy7MFCH+ETDHTOFULEFtiJnvK+ng/jHfKs2sQmohPSVJ2/kj9
AwAA//8DAFBLAwQUAAYACAAAACEAfDIUqyYBAADWAQAAGAAAAHhsL3dvcmtzaGVldHMvc2hlZXQz
LnhtbIxRy07DMBC8I/EP1t6JU6pQVCWpkKoKDiDE6+4m68Rq7I3sLYW/x07VCokLt33N7Mxuufqy
g/hEHwy5CmZZDgJdQ61xXQXvb5urWxCBlWvVQA4r+MYAq/ryojyQ34UekUVkcKGCnnlcShmaHq0K
GY3oYkeTt4pj6jsZRo+qnUB2kNd5fiOtMg6ODEv/Hw7S2jS4pmZv0fGRxOOgOOoPvRkD1OW04dmL
aAOflI2qX5PQOci6bE3EJbPCo67gbpaKE+DD4CH8ikVyuCXapcZDW0GeRuWf2c3kMK5rUav9wC90
uEfT9RzPWWSL4rxgrVhFhlF1+Kh8Z1wQA+o4lmcLEP4ImWKmcaoWILbETPaU9fF+GO+UZ3MQmohP
SVJ2/kj9AwAA//8DAFBLAwQUAAYACAAAACEAxG4mZnAgAAAAYAAAEQAAAHhsL3ZiYVByb2plY3Qu
Ymlu7FwLQBzHeZ7dO9BxgHxCDxDI1gpZ0iEDvhcIZOMcd4BAAYGFIhGFWBzHYU4CjhwnCfmlk+QH
efsVW3YeRW6SKrGdyHbiOKndyG6cyHYSy60bYydtlNppSZs2dhunpI7u+v2zs8fecSCQk9htM/Dd
zP7zzz///DuvndnZ088vOnPsocKfsRR3BTOwWDyLZeroEsIE7iyMyQgQYvF4nNPwg+Cf3P8iC5yF
rnSPFcAIZAALgFzADGQBdH+z4ecA+cCFwAWABVgE5AGLgSXAUmAZYAIKgOVAIVAErAAuAqzASmAV
QLKL4a8GLgbWAGuBdUAJQPHr4V8ClAJlQDlA9D+5t2+BrSyEvwjufz0bhB9mB2DdubtlqDGaFlQH
ZnVtf/Hw/seflQxgim5QObczD6udNdHskSb0SFr+VH/TuZOPfJHny0T+ep5trI8F2TDbASuE2R7W
ze2xR88ya7iQyRLlvxBc5M/KrIv8hFB2F9vF2tlW1gbfoYufa9CC/KkNUt7k5pKO7pNLUjnJoz6c
7gmpRO2f+gPqA6gNU/unfkBr/9QvUFlT2z+1xyWga+2f+gmiUfsnX2v/1HdQH0DtXwFWATO1f+on
qA9I1/4vBd0G2AGymxOgfCqET9WrCqgGNgKXAZcDNcAVwHsAN1ALeAAvUAfUAw3AJqARIJmb4b8X
aBbXW4TfBv9KYCvQDmwD3gdsB3YAHcD7gZ3AB4BO4IPAVcAuoAvwAZSHH34PEBDXVws/CH83sAfo
BwaAQSAEDAEfAsLAMBAB9gL7gP3ACHAAuAa4FrgOuB64ATgIRAFpmYT7LaHwBsZeA8EiQyDCUeBF
gByi2cHin0xSNVuNi1FcP4qwRBGJah+PX44wsh5//PL93cW1D/3a5dry7cU/Wm6CSLiT/JdbVw2J
XxLSk/3Tv73pk7WeTz79vf0Plh7YZQGNMs8AFgCwEHeSZBJXVDhTarLUrNX20FKvCUAariL9qsr/
NHGtZfFO+VboJrP2ZsqfTN5uSYTuVEOMVRarIU17iW1BK7gWoD8HUIUWUY1RUqXYkkJeQZ2K1bjI
d7FK1A7N2JJ0nPSJUt2Mxy2wEtcPfR3ZkByPwA+FLwTWCFqj8G3w5SNqehO4+3CtpZoKaelzePrD
Y0tkkkupjoJJRjoKz8RPvFUUyR2vjTxEdM0RQQvr/VT6EAhuIgrn5v0hY782/NqgTzcVprGHcj/y
jVUtGUy6GB1VJzqDXvG3nt8OF5q1Azelm21AY+9lP1W1JCkuLavz9GPPkiySlNwsiIIadOIEq41E
wsHuvREWULZ7dm3xDSBQoxRv68OQtyMU3tMdCln2FOeazR/z+IYl+WO2a202m8PWVmWvLmMWm8Hk
XcCWyHnSxTabq/L6Q7nXbeoPdfv6pdOW9iGfX7q9wddvHA7k9HjDAV/E5OvuX7qyLRzouTXg7/ex
zKYe9pBpW3hvrqd+ZCgExiUrtgUGhvqZLxKoC4SD+wxy3u2evcOR0EAw8xpjncExf0OE3xcVicjX
whchnAWQU30Dbkayk3i3JrEXqI+B+63wV2Wq12TFLwmaCXNTultNIs7HWST2IR0v8ZNLX9vUuHfu
l7HfsC6121eLJ3718w9nUszcLiyYf5jAagbU0p87XQFYPIKtHfOvAP4ifCQ/d9pUjoXI/wIQNcum
xqe7Xgji95eqMfryn097pPJrec+1/IXIuk/UHH3+FemUPQcN+fP5GtXyueZP5aT5Bbn07ceCGLXd
UA+sOuJ2A0YKwGEWclANvZ3f9PlPb78ZbExkQ+22COEsqnZw1cJvEg3+m+L6NuH/TPhZIr5E+IeE
fxtVXbiHxB35prh+WfhvCN+erfItF/4x4T8j/KwcNb5J+IeE/03hr8pV433CPyb8F4T/hvC1full
oY9EQzJcifDpbmi6mvAMTnfzShF3iHNK7ICOV9y+GfqlvQODiqJ4FXaNvIjVuptlepwiKXvgP4bx
hfwT8EnMcfhnELeCtQxf7QmNKMUR9PkB6+6SYmWtooUp9e+fj/LvQt17AMsQ69jN8hnkMaXHwAF/
qB9lIT208DoWlVW9o0hH/BtZIhLDYO3QUH/Q74sEQ4PlLb6Iv886cGCfr39voFTZ6hu8OmAt9tk3
+q+xF5eUKrYSyv91yCEfg+ttD880uLb3BdyBiJ1G1QmP0TcsR/ioetJhq3LYyphiNC30YlBdoQ6q
8vXaoLpK+o42qJr6tUHVQkblg6rSow2qi9j92qBqCmmDKusXg2rmPvliMajmBPmg2r63W2G9wcEe
a0mu2VIXHFDkdqvdLtuiC9QCS9JOuyPXvE4ZiAozRtuYZh2mmcfYZzUu46Zhmm3cqnGkNesSFWLR
TatwD25el2sOf6zCz9YfcrQHItHsI4dXRU004xg+9OOOYWvxYQOzlhtttRb7Ru/O6IJc84AUXWLL
NTeEwoocZBl2ZVtIsSs2V67Z5zZ4A6y/f9hqL1WCppLy7YecueZcc0FTr/Jk5qELt/UFGgdzzTet
C9ZIa4PSXy8ZUC5R7Lnm5UfqBkqwLpVZP9jDlKbeXPOWwMgvI8pJQ/3CFsaeXGhs215ycsMR2XGL
7LxFdv3bLXJFdKf30t3Rgk2XshLJa9ldolyh2BSvd31TxuWKY8ONGXsMtb3RC7x9YWulayUrv2kh
y7/J6g3VKMp/Plki50AL59PSUw2jF77mqPybCyucN2Zk7ns657Pfc++OXvThNQ1LyxT30tcvUSpd
zPTdC7zmZ9eueq4Mza/WWl7h+G1e/oaqlfkF+WPmlflfbHroOwFF8azMHztilWteXbvkkhq7reI9
+VX5J83Xvif/0nzvxnxfcIDJ/t0Ljsm+zWc+mmvGHB2VMwtVVEFlp4rqNsbibjSCAoRzBL0AjZjo
fXi+MhHTvJzEbmX5kEDjwJ3UrCCFySzb6kYGv/tNWzwRtMXZFRsL0FbWGK3xje64hEBpPENmFxtY
7jiSm0rjuT14wjNZ47F7J2L0FGqcjMW2lBhZKUrCBTHIHI+xpVYT0htPxawFeI6I9R2P5UmsAnmS
0FOxs3fkuCF7Ve5pzEMgNnbfRIxUxOBVOxrLhoyjscLSeAWoucajMaMt/pZzRYbEStd1xNaNxNaN
xt4kdii5gDJ561cTMbMJy5mVJjYRG42NxDpiLM84HuMZvnXnRIwrdQFYQfxdsbEn/rsTZAQQYjcc
j+3D4/i6gtg6a2xdVUJyLnuTzEa8d1EGb+K2aFfIn8wo4kZib8Kw2lVH7M2MqatGoZgloVhjrCpm
jRUkbGTSbDRx9icGlm80CQXvgvJYfngrsmKlnEIuAvnqFRfKrAQ8bjaVhBe12DgaMy/EYhB8lPss
WXG64RYx4/jZtIaTYZlkNQq5Gl9NJVdwNR6UmWNKAyhUyN76zAQVys3euhMqFBtHhD4jqj6j6fTJ
m4c+Lq7Pe1KttYXrU2NI0cd1Xvosm4c+lHFkxfOp+gS5Pj9I1WfLeemTP6s+2bgDsRsmzt6LKruY
TweM7PPSGUOUrwky8SzVh3op8Z0Cxh6Lyew4MHlWZhPAKYRNdA30xNU1Ym0uKbHbTRak1VxIBKiH
Gge/LS6zccg4inAbwi4er07DSuMYOYAJxI0CI0AH0AhUAVagAMAEaDEl69BmqdTLqYJEbqqXfv5p
QaQ6PTTyfpQSE78bMOJZUF07olZq6EKj4msWxKNygczXOOFpk+RihMeJ/5AJJszmWyMUXjuP9bdH
36JO/dzrb477//6jXR9vcd80/N3fNPzL1j3KbOtvU89fDmg3f0fPX9Q/WQB9+WeTVInIm8kYcPrn
H6LP1+H5Z97PX03I5DWRkT7/DfPNHPyUP+oabwVzLT9mH2mef53nkTutxc+//K3ISbN/ov4ZUd/J
KFaMRH60tQ8Bdt6EqJHT+u+an8+t/v1m8tWJ1//J73lkx5frTvsnO2atf5BM0u++WXlm9apX3GMP
mj/ZvnlnpgU0KHKu9d/UZKlZq+1xLuu/zYl2TnfxnXBu2EFmH5jT+i/2VBNrwoUiBWhTIT6xg/30
tKnYdCELlXnGFLPLS8TKl7fBjiRFvnxbItSRCHUmQl2JUE8i1JcI9SdCQ4lQJBEaSYSuS4RU7Wdb
F6fV8amVb31oruvibaiRktSG7u5818XHYBnSdP7r4gXzWhfPWaRwfnV8UvNULUT3hrFJYPwsPdqr
rhOTUS/+GLuTtzuiHgWN/BPCPwV/DFDQcxOd3KiI42HQTbAQj8DPUdRnLZzqTyJuSKQ9MQsfpXtM
l0eqHO36DGScBp/beDMvdxsicpA7lZV46HnHSvGCriToazm/TcefyVPE4zb5KrlZDsskh/hpJkBy
LJBTCv7U5yyQzuv5S5NvQR5uY7l8AnacxKaHpr9Kj8UV2HZC0BXwngbcxm75FMo+Po3fxct1aho9
Fj8D/R/TybFAziTRABPKSPlSOaugx/FYfKWmH/lj0IHS05Kam2Cs4/kc1eVj5XSkB+9oSj4kdxT0
ER2dZE0iL3JF7BRClFM8PoJr4ifXp+MnPqI1Qg7Fn4DfoYt3I74NUs5ATwtT9Se+U+Br1PGRHKKf
Ab1KRy8QdBNkWHV04qd8LeAnfxK+pl+Bjs/C0++TO8hOgk5pqZzE3wW5k3jtRrOrBfQR0KqAxZBM
dE3uxNkU+4OH0i/GnjGlcxuv4fYfF/JA4vmQfsTnJgK5G3s5Xw/oHdCbXD/2jGeaiVN6qyjnGcih
6wnhNyLtYzq9SFYV+kQq32K6gCN+C/zjOr00OrcDXcAR3xjkamueKhX9jIijeKKRT24mOsUNgc8N
aA4PsjzYJXfyshNPsjMxPDOAZ5b9uw14+Jjav6tifiblMXWbzw5/Nd47cGJrL4Vox1DTk45oZ5JF
JLfx5HbIn0fi5LxnyyaZ04EtSMd8MlqYpGXv20n6U/RPcGR6Fw+d/w9teHpZMZ6bMnHrqCKxqIm/
jmKhTMSz1Wm679EsXhlMqJgULoY3TvTU5y+8DKKArNFNQk4eXmRpE/RlrIJNUBhyyFFJiD8Hk/5b
iYBwHl5OGxPhhbhShJyFeFHGJsK0EDIieMx4BuwT4c1oiKMyLlLkkw6NCX3yWZcu/LoIF+IFmdFE
uJSdEGHKK6oLj1B4mvx8ZqJ8uf75TBE6kK3ahK0UVBvqyCitAq9K8BeivGdEmPI6rs9L8IM9Yas8
vDhooo5Hy4vCkFkMjzo/ovO8BF0BqUrwU14jIkx5HdWFxwQ/2JPyOi54KN+TgofyGtPlNSnoCujj
gp/yKhA8lFeVLuymsN6G71QYtqL6M55yT42gy8yQeBRXp6pUW6nW3WUcwy+9OBSPm+Cr+yhr5X/D
mzyZrJbW4e0UGu4LYPfiYmbDTtAath6/5axcdnDr2pAujvvkkmNILwF97HZs3vYDGv0U+si9eE2J
JpcK8cMVCH8IvsLqZIWtlTPYZ3jn+Sh0DtaQTG3/iV5hcfF0UZFuTPjjwj8t/Enhq+WRuGYXs6tk
ma1iXfI65KTmT3wPAOtYt/xB9kOEB9l/GE/Q/USabpnKks1j93MZRLuE9aLsavpbyUfMvqRyq4se
RL2Y81IOZpTKyO/AHlyRXuSTe4C5uQSVNxuLSGHIX4d9N3a1rzvQr/E9yrKYupeFXQWkmNqXg5AC
dh3ZcwJBTZ9TJByO6DClLo8HMJ3Kgj7XGU/9Ms+k17OQ6/kZdvz4dUY9vYLzP4AXds3sDGQuT2zr
7KHdNexU0P4aDyflU4i+kMqnL5VWHtJrTKL3xYysBY5srdpgEdJgN4DbjsIGXZgW2cj+RM9IhNX9
SaJn8/KOobyPQlfVXlCvVm8v2stU7UJ8+nK6ePlV6+vpW3j5secAnedTflea8ifp5dHrpb7SRO1j
CHqR35ei3xaunzr10esXFPqRTeej35aZ9YOFyEpXPfP86vvWP9d4479Hfxfd+tAyC2jUJdLwSctb
lCO55BeNTKnJUpce1SLMZf1FFf9O/lpRzN/H+3dvf51BNfRx0ueP/v5dIZ8r47HlXfP+Xecs8/dz
vn9XnTR//+O+f3f8xOyvCDjePa8IoKqdp0u/f3IRpKmTZc1HJ0L9jM5pz3xvCEaJ+hm45epGD+9y
fn/vucy3Z2GY2ndpe0dcr/Q/6ctvAbNaLG01Se0J3aDzWQd8bWsIwbfhEuv3535/+56vUD9+7v2j
V9seWfb9e9+/+fC/f2XVwxXHr5zL+v326ujSRcNlnntMO38xGfnyMxYUaQ7jR2qy1Kz/NH6czzr1
Ozl+rHhXjB/U1WjrP29r/Nj4Lh4/nP+fxo8sdRlF11Nq40etGC+08SP4f2r8oBV51VHR3cDvd/zQ
739XURbzdJbz2H/uRh6viXz0+VfPM29iR/54uKGZu3gEJuI5XC/iPYJnF05r0QnEXVju28pa2Wac
APPyk1znECKicf4vcYfoPs0lVR+Ynlqocvbg9GF4Lolm4KElH1FBuDcDWxL587gqJ4PBfd83SjOz
eBaqFeE149Q0DW/cQbpVovXuTUmnjFywUsPb2E1djW61HIvkq3FWaTXsvRE5tMEOIbyXHsYxmQGm
QH6QLywNI2zFwmkVzieVgM8LrgH8hTCD0nN1shak8HMpw4jtxZkCBefy+iAvjAWqHqRV77XmVwpK
PSSX4/RfM/5Wg4fOg+5Fqn6k98Af5nIpLzojqqC2DOGvn1N9yCXIdRlWDSp+V6SxGi1sOd+W1ezQ
sxI6kuXmZ7V0tmnlB5XIZgFYQn9lx7JvJ+5xB3Kph1XKebgeuaaTU4+7QzLIXpSS7qwCed04uRhA
DN2HZlipm9/b1BPGj/OthtT65YQM/dyHTqjRXxk00kIaTe+rp9hWCy30ltoBDQZRC0I4GzmM0rXj
bCSd+20FKlEfO3EV4fG0nEmliKBE3ShzK7Sv5/d9L2hU+6buuv6muxL33IHa1IAaWwddXdC4DFsI
HlBqEaJdGzuuyoA6yK1AiEpQiz/yXfhT6Q6cx1NL4oI//3s+l5ZyCAU4DBwBbgRuAm4GbgHQM7AP
Ax8BPgp8DPg48Angk8CtwG3A7cAdwJ3Ap4C7gLuBo8A9wL3Ap4HPAJ8FPgf8GTAGHAPuA/4coFWH
L8D/IvAXwHHgS8CXgfsBWmAlHjzHsK8CJ4CHgIeBR4CvAV8HHgW+ATwGfBP4FvCXwOPAE8BfAd8G
TgJPAk8Bfw18B3ga+C7wPeAU8AzwLPAc8H3gB8APgecB0uUF+H8jwi8K/0fwXwLGgZeBV4AfAz8B
/h6gdO8WN1NP2Yra2sCaePtXe4MWtJhWtAqtn0zXE+j7kPPpC2i8Uf+MzCjjJLos8S0qM3yL2MWF
AblTd23nYkeaGRj4ODn1rQAtnaSJ0/kHi41YaZ/pywBL0BKr0EantoVpWSkeXyrPnCYep8PT3KFU
7BUDqZTDByft8BuJnb7bjAP0cjJfPL7m56qkAhK1YXGqKAdeXLdhXJ2uYVGSKNrSoVdKydnSa+Xk
oqY/A8XjFyaJckIUrS6Qa5wSRTaWJFrc1qz9h/Zxk/9oef2hy5JOPt3ydPQ/No3qi5Yn3XAtPJNv
vGvDfz9/5y+bv3F3w28fvq/pbuKjlvetF+5f8dnnmzcfO3r5pTgm9T6NvqGpOrbmqmXub73wKeUL
t3jDGv2r955e+tKnmxse2FO69LmXOn6l0ckvgLwogG84SFtpe6ycwtlMiloYmj9Gcnz8wRBdwi9w
CooxN9bX1cueEH39wSiuAjh+xdDXJa5HghH6uoOWGIeU6MVlLXFTL2OfT0QOB8D71cQlDl/RAKWJ
wmGlQRqstLTbkPETidj9gcGejJz6EX+gP3qJhRlytntq/+sfLSzDuCM4aK988gYRdDoWHES0scXn
f+RhCzMawVf54GoLMxnbwqHdAX/Ebs63sMyc4UhPqD9wR5eFmUmWiPyrb1Nca29v0B9YutfCcnJw
IFw7D77nulctLCuKe2qQ2K56OhCHk2UFL1MSHG3D3vBEYSLs+MVU2PkvCJuM4lj5nj0FUOxGPL5C
DB0+G3wdYnks32F+MgadeC7x+C7Prn2+8C6Y6onbUSwWrvB/7blp0aA+PQoDCNX4Eb1Xcqax4bjZ
wVstbAEbOMBZflamsUiMH0CjMgw/PgldtULWBXp9e/sju5+y4Eko2GXRohKaBbPu04QkaKgEu5sp
QTiIBKrBEpFNvW3/gSfTaJRXtjL7Le8nTv/O6aL9BoiWmK9jepRPQpSRhe3+4JcetrDsZGsR+Ud0
k8Ue7d1bLWxhMouwQMDOjWr3KzAql+e8I60850nI0+zbNNgTGHkDNUW9SxKr9UeC+wLeQH//E9/Q
tJEYzDCwt9+31e61t+OOL2cDM7kTVHuFyUnKcOHHpwjb6dzla+8lUwz0TDfFQC5MkSFqEz9neugN
1Nvk4m6js6iDX6d7z1mqnVfiBql3OXFnumVIMjJ/ny9cclQrRiKWyJ86S+bCGb/3QmEzE5UT152X
kXq7fdPV220m9RjfGN//o2mKcXrPvdN0CechmQkVVd2/7u/X9IGxp86mfmH9lJn4MdUfb1WrNz+r
+q9INO2285jQkIVdkGwhLac3vaicNDb3M3y7QzZgm5160GSHhR1QZfncvftCMOF9Pz4/y4M0mgvR
yQRV3nLIWciKwGNBbnmAxL+sg0CSo/Eg2Z0fJVnGua6k9Q9HaZ2DtLKtl+Vbs9jQksxGAzuMc0uv
GY2oASuY1nWO+iMZmFcxt7xkd6ZsrpHNC+SwtMSUkZmXJefxCemdLEfefLlsXsakcFTtfq+Qlyce
LaP0bJmLNYk18lXMsL5zEz64EcUXN1xOWxkzXWg0eplZXijl4XsbrPL61Y5y22o893k3dmIAwKPr
/uHO9gPDO5TWHZWuTkPAgWfU/u7Vrc31WJTYi89o4DDzitAg62LSkXr073VB/431mJNHWfBF5j9c
//noonuj0qF65qhrqKqzufBgWuFpqC2z26J2T5mnrr4iWv9ibW3U64pmOEbro0fZ1WHfgNIQhNbD
inWkqrIk2ukNDQyEBg1ZrLMl6A+HhkOsN6K0o+FgiaWztaGhyVvP7I7OlvbW8rqjzc2rb7EcaVPs
0YhJae0+9B2lOdh9IuwLH8CXa6QLDr80amSLDxsOFi8/fD/TRqEoPkuyZxMriC4+vC36FVqN2RF9
dIx/neukFDoprS/8YbbjlewVJ1GZzI0eyf7UAZpRL7vIg7NIpU+t+slk8VKP6RKPtPyp6zFktWHM
2vRUUbt7daD25PvpQxOFjQscd2xZ8HzRhsXPF635+YtF6x0/KHI8U0S/7Euvbnj0rReLnD8ocj5T
tJm814ru+cozRRbJ877ptemO964fxbMJItS1PwlTUC2kcRNNdVSj1VpNNC2krl5SDD37kKMYlIiH
6JUuNZSBPkb7oy83EHMUURqMjN2QASB1EjQa5PB4uqZwG/Y39euvNsiar0NHgjmWqi2197mkfxBM
t5tUTn3+9rkkTuGh/PX9Vkp02svToH5OxCSv+u7H2s783JLzyP9vkUVf2vznlzdxo/wS1RY0BW4H
op3L/R0YsrQqifBSuuaJ8LTNfcZ+IfzS8bVDx/b+rO72ZzMu+rPf9v+zxFeJ1ZVilYXORcTjRnbk
IwEhRWa3ZapxFKO2jCxSEm6Ky5jEJbF7FqgclMI+jTsziVuV2TSNy5SGyye4jGy5rsxqXuqvXW1g
ehIPr0KDSueuRANK55ARzwHiZLKjNhenazOutWHEH4FgPEDjmUI370ZSmcymTrKTrhxJV06kNvyK
lkfgTvJf1gBp8qUIY6ho29q6aWvtDY5Ob2tLS+uWG+ydLU3era3tCEADQiV+6ivL65qbSWUqPYjQ
0HxA2Eq9o2qtOCZoWo3pUnMUv6TLYlOyLhdA6EbEky7hkDaEaCOINmxg1FAfQTpVD2NGfYe3vrm8
vqOeyktG5o9CpNiH1Bx4VaMP1pG7R9CWi9s3xKnaDylmSzESboq8EgxiPNWGUz6aqmO1oxwDKgp8
kDSgbFQyqfBhkQ3ZRuTMHhI0ag/kovxX+yEVmk9Plv33B4osT/wcy5h1/7A1D3LrwTCDbdTBlUbc
wLDOUHx41UZXbXBtbtaUVA3Ib6BQRFVSvTgmaNWi2t6q6cd9UvKVlBtItNRP6REt9Ut+REv9BB/R
8upUA51Uc2qAlXiD0J4NcZ2bg207txqPX0o1nkaL1AOdxJf6PgrRUg+CEm1RGi2om0s8BZL5wMgf
T2GbbGqRPkwPNmLVcyd8xB3U6LU6ukYbRi+uLd9RhnlpCvDydFoGXngW3extwhftzfBSCjcMJeG2
YmfSh72Lq5EbKNmkcxCLGdA/U5N0GjRymqm1Bp6L9zd9aufOG0+7nM3OcE7V6KlvbFI5Ut/qJFrq
mzlES317B7RsKlAYtvIDmvbboX0/dtQCpHE2gGuNtwU7SvSnxXRjdpyscRc07hJ9kJaqG6VX8Ich
IzsP8vzYlaEcBmClqZglKTGUAhNl6j6yLYiLQI9upAtgf3E39hY1+p6ENDUF6kW2NQ0/xa4FUuWQ
Vunz9nCN08d5MbfT10E/vts5ZcMW6BpBOfsSWg5g/0pf7svm8LYaCpHi1PfXoqBqkMTs8Vohj+qf
qEC8BlFdJQeyoBuEnyH8BcLPohqQpY2u2rfz1CovJcVdKcb+AhLKJNyTuX5bTD+Czrhkrw2qSQvu
gujQER3InA+/Th3RyXWa6aeprqb42kpHRVWlp8pZVl1dV1fmqvDWltV6q714uHJ6bBs2eFz2hurr
8bZOXci/dyAwGKnRa33p2kZ8dJE7HYc6C5glzjFLnDMpDp99DNQUT00+oEhjoH/IGxqMBEYiVAAb
SNsD4WF86gkD0BCeIrGS4nTUFDurnQ6HA7qBwduyiRM8XofT4a3Ug4rW5qkpdtW5GjyVFfV19Ruc
dQ0qELfJW1Ncaa90VtdWNFR7CLUkMNf8gcbQcESpH4lg3TMQVpoGe0MfzDUn7GGvudZZ5XTUVbps
Zd6GaluZ3e5tKKuqdznLbLZam7fabrfZKmqvvwyd3WWJVPiKFCTzTn7I5w9AoN7aNbZSJfHvzTWr
dq5xVZYqFY5SxW6rRqjS6SxVdopIR9okzlTqTBXkXU7/HwEAAAD//wMAUEsDBBQABgAIAAAAIQAm
asylswIAAOIGAAAYAAAAeGwvd29ya3NoZWV0cy9zaGVldDEueG1slFVtT9swEP4+af/BsvgAUte8
0NJSJUFt2tICQ9N4mcQ3kziNRRKH2LTs3+9spx3pwja+tM7ju+fuHt/Z3tlrnqE1rQTjhY+dro0R
LSIes2Ll47vb+ZchRkKSIiYZL6iPf1KBz4LPn7wNr55ESqlEwFAIH6dSliPLElFKcyK6vKQF7CS8
yomEz2plibKiJNZOeWa5tn1i5YQV2DCMqv/h4EnCIjrl0UtOC2lIKpoRCfmLlJUCB56O8K1CUAa9
JjlkfaMSdbAVeDEDP1Usqmji47EzCh+GakM73TO6EW/WSJLHG5rRSNIY1MFIVf3I+ZMyXAJkq3Da
QFGSSLI1DWmW+Tg8BeGedRBYQgBrF+HtehttrnWCpGOakJdMfuebBWWrVELYfnfQVwwRz8AcflHO
1GFhlJNXkxaLZaosMXqkQs6ZcsMoehGS5z/qzZrCOPdqZ/jf1Pu97j/dLZOCrmRKJAm8im8QHBwE
EyVRbeCMHLsHqkQKHjuwWgeO61lrqDqq4YmB99DQoMdN26lBe/0mPDPwyaAJzw28H/DcwP2TpvXC
wMPTJrys4WETvjDwfshLA++HHNeJ7+Phdbt9+PAHboG4O4XddoUngMNhC1mB0olepqSiMTb9PXFH
58qT6VZdzg8njn8/vrqbHR6MD/pHnYnTwfjIsxI4JtWj2xMK36U1VGDbsJ9+0H72QXtVRHuZ7fks
3rXXE6m2lSNIDposmppgaKJ2VZZ/Z126o8ua2NXEyyaxkryd+OJdYpWlqyZ3K3ejKWB6W8cOcKWW
Hj5718UNV5j1Vtf+/sQ2vNRr0DLnIeC/jye4ms1vD8NBx2l2lmEy96C5PUqyol9JtWKFQBlNgMLu
DqB1zcWn15KXGlV3E5dwnW2/UnhLKNwxdvcYo4Rzuf1Qfbx7nYJfAAAA//8DAFBLAwQUAAYACAAA
ACEAoecGjqEAAAC/AAAAFAAAAHhsL3NoYXJlZFN0cmluZ3MueG1sNI5NDsIgEEb3Jt6BzN5SXRhj
gC5MPIEeAMtoScpQmcHo7cWFy5eX78cM7zSrFxaOmSxsux4U0phDpIeF6+W8OYBi8RT8nAktfJBh
cOuVYRbVssQWJpHlqDWPEybPXV6Qmrnnkrw0LA/NS0EfeEKUNOtd3+918pFAjbmStF1QleKz4unP
znB0RhzVdMOiGH1p9cFocUb/lG4H3BcAAP//AwBQSwMEFAAGAAgAAAAhAOqA1UOjAQAAZAMAAA0A
AAB4bC9zdHlsZXMueG1spFPBbtswDL0P6D8Iuq9KAqzYBts9DAhQoB0KNAN2lS3ZEUBRhkQH8b6+
lO06yamHXaxHinx8JOXi8exBnGxMLmApt/cbKSw2wTjsSvnnsP/6XYpEGo2GgLaUo03ysbr7UiQa
wb4drSXBFJhKeSTqfyqVmqP1Ot2H3iLftCF6TWzGTqU+Wm1STvKgdpvNg/LaoayKNiAl0YQBiVUs
jqpI/8RJA3t2UlVFEyBEQUzPQrbZg9rbOeKXBldHl52t9g7G2T3lTYqWOO8wxBylcsnlSJzkAFYB
uyyAHVXRayIbcc+GWPBh7Lk88jRmminuk+gu6nG7+3aVoKaCVVGHaHj6163PrqoA2xILja475pNC
z986EAXPwDjdBdTAUH1kLIDbaSzAW97Q3/aG+9wKHPze05MpJe86D+EDciMLnPlmI/Nfs83c/00r
zu0tPzNeyb4RvZYXed+l/J2fFMiVQtSDA3J4Szi1z5zmfBnBJm+AdM0vNw9nrcKTMLbVA9BhvSzl
Bb9Y4wb/Y416dadAE0UpL/g5b2r7MG05rb9H9Q4AAP//AwBQSwMEFAAGAAgAAAAhAMiBPKipAAAA
+wAAABAAAAB4bC9jYWxjQ2hhaW4ueG1sRM5NCsIwEAXgveAdwuw1tQsp0rRg/V/rAUI6toFkUpIg
enuDSLP75s0wvLp9W8Ne6IN2JGCzLoAhKddrGgQ87qdVBSxESb00jlDABwO0zXJRK2lUN0pNLH2g
IGCMcdpxHtSIVoa1m5DS5um8lTGNfuBh8ij7MCJGa3hZFFtu0wNoasW8gH0JTKcOwP9BV848ZB4z
z5ldNd9ecnrNvP3I59rNFwAA//8DAFBLAwQUAAYACAAAACEA3fGmAUMBAABhAgAAEQAIAWRvY1By
b3BzL2NvcmUueG1sIKIEASigAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjJJBT8MgGIbv
Jv6HhnsLbTejpO0SNTu5xMQajTeEb11joQTQbv9e2m61Zh48wvvy8PCFbLWXTfAFxtatylEcERSA
4q2oVZWj53IdXqPAOqYEa1oFOTqARavi8iLjmvLWwKNpNRhXgw08SVnKdY52zmmKseU7kMxGvqF8
uG2NZM4vTYU14x+sApwQcoUlOCaYY7gHhnoioiNS8AmpP00zAATH0IAE5SyOoxj/dB0Yaf88MCSz
pqzdQfs3HXXnbMHHcGrvbT0Vu66LunTQ8P4xft08PA1PDWvVz4oDKjLBKTfAXGuKir17VwUZnm32
A2yYdRs/620N4vYw651nnjfoj1AQgReio/4peUnv7ss1KhISk5CkIVmUJKHpkpKbt/7qX+d7wXFD
HgX+Q1yW8ZImCV3EM+IJUGT47FMU3wAAAP//AwBQSwMEFAAGAAgAAAAhAJw8u1iLAQAANAMAABAA
CAFkb2NQcm9wcy9hcHAueG1sIKIEASigAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnJNB
T+MwEIXvSPsfIt+p04IQqhwjBIs4LKJSW/ZsnElj4dqRZ4hafj2TRKXpsnvZnMbznp4+jyfqZrf1
WQsJXQyFmE5ykUGwsXRhU4j16uH8WmRIJpTGxwCF2AOKG/3jTC1SbCCRA8w4ImAhaqJmLiXaGrYG
JywHVqqYtob4mDYyVpWzcB/t+xYCyVmeX0nYEYQSyvPmK1AMifOW/je0jLbjw5fVvmFgrW6bxjtr
iG+pn5xNEWNF2c+dBa/kWFRMtwT7nhztda7k+KiW1ni442BdGY+g5LGhHsF0Q1sYl1CrluYtWIop
Q/fBY5uJ7NUgdDiFaE1yJhBjdbbh0Ne+QUr6d0xvWAMQKsmGodmXY++4dpf6ojdwcWrsAgYQFk4R
V4484HO1MIn+QnwxJu4ZBt4BZ9nxTcd8X6S9NPu3NJCOb9UPivn+IPrlwhuum1W8NwSHiZ821bI2
CUp+pIN+bKhHHnbyXchdbcIGyoPnu9Dtx8vwE+jpbJLz16/Foafkcd31JwAAAP//AwBQSwECLQAU
AAYACAAAACEATwCQPqQBAABXBgAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnht
bFBLAQItABQABgAIAAAAIQC1VTAj9QAAAEwCAAALAAAAAAAAAAAAAAAAAK4DAABfcmVscy8ucmVs
c1BLAQItABQABgAIAAAAIQB/yXraPwEAANMEAAAaAAAAAAAAAAAAAAAAAJoGAAB4bC9fcmVscy93
b3JrYm9vay54bWwucmVsc1BLAQItABQABgAIAAAAIQDlfF5xnwEAAMoCAAAPAAAAAAAAAAAAAAAA
ABkJAAB4bC93b3JrYm9vay54bWxQSwECLQAUAAYACAAAACEA6aYluIIGAABTGwAAEwAAAAAAAAAA
AAAAAADlCgAAeGwvdGhlbWUvdGhlbWUxLnhtbFBLAQItABQABgAIAAAAIQDB+lqtJgEAANYBAAAY
AAAAAAAAAAAAAAAAAJgRAAB4bC93b3Jrc2hlZXRzL3NoZWV0Mi54bWxQSwECLQAUAAYACAAAACEA
fDIUqyYBAADWAQAAGAAAAAAAAAAAAAAAAAD0EgAAeGwvd29ya3NoZWV0cy9zaGVldDMueG1sUEsB
Ai0AFAAGAAgAAAAhAMRuJmZwIAAAAGAAABEAAAAAAAAAAAAAAAAAUBQAAHhsL3ZiYVByb2plY3Qu
YmluUEsBAi0AFAAGAAgAAAAhACZqzKWzAgAA4gYAABgAAAAAAAAAAAAAAAAA7zQAAHhsL3dvcmtz
aGVldHMvc2hlZXQxLnhtbFBLAQItABQABgAIAAAAIQCh5waOoQAAAL8AAAAUAAAAAAAAAAAAAAAA
ANg3AAB4bC9zaGFyZWRTdHJpbmdzLnhtbFBLAQItABQABgAIAAAAIQDqgNVDowEAAGQDAAANAAAA
AAAAAAAAAAAAAKs4AAB4bC9zdHlsZXMueG1sUEsBAi0AFAAGAAgAAAAhAMiBPKipAAAA+wAAABAA
AAAAAAAAAAAAAAAAeToAAHhsL2NhbGNDaGFpbi54bWxQSwECLQAUAAYACAAAACEA3fGmAUMBAABh
AgAAEQAAAAAAAAAAAAAAAABQOwAAZG9jUHJvcHMvY29yZS54bWxQSwECLQAUAAYACAAAACEAnDy7
WIsBAAA0AwAAEAAAAAAAAAAAAAAAAADKPQAAZG9jUHJvcHMvYXBwLnhtbFBLBQYAAAAADgAOAIkD
AACLQAAAAAA=

------=_NextPart_000_0033_01CABC4E.DC186E20--

0
helene
3/5/2010 3:30:18 PM
This is a multi-part message in MIME format.

------=_NextPart_000_0058_01CABE22.33272790
Content-Type: text/plain;
	format=flowed;
	charset="iso-8859-1";
	reply-type=response
Content-Transfer-Encoding: 7bit

Hello,

I wrote a VBA program and inserted a:12 in columns 1,6,11,30,92 and 104.
The outputs are column numbers (1,6,...104)  and the columns for these 12.s:
A,F,K,AD,CN and CZ.
The output is unsophisticated.

best regards,

Gabor Sebo
worksheet encl.
"Gilgamesh" <gilgamesh@dont.spam.me> wrote in message 
news:uthPqFzuKHA.4220@TK2MSFTNGP05.phx.gbl...

------=_NextPart_000_0058_01CABE22.33272790
Content-Type: application/vnd.ms-excel.sheet.macroEnabled.12;
	name="identical.xlsm"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
	filename="identical.xlsm"

UEsDBBQABgAIAAAAIQBPAJA+pAEAAFcGAAATANkBW0NvbnRlbnRfVHlwZXNdLnhtbCCi1QEooAAC
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAzFXLTsMwELwj8Q+Rr6h2AQkh1JQDjyMgAR+wtbeNqWNbXlPav2eT0gqkEB7lwCVR
HjszO7O2R+fL2hULTGSDL8WhHIoCvQ7G+lkpHh+uB6eioAzegAseS7FCEufj/b3RwyoiFVztqRRV
zvFMKdIV1kAyRPT8ZRpSDZkf00xF0HOYoToaDk+UDj6jz4PcYIjx6BKn8OxycbXk12slE+tFcbH+
r6EqBcTorIbMQtXCG1nTIEynVqNcTOAuhSfUWajx6Ja7SdZgcQcp30DNpWrpVGZpuL4eShb3BfrH
Ft6YTNDPNQuXLdhBg/I5IeWVQ9qZimJCMFQh5trJNeiGucO3hI5+1tpbMpIrW3OpspF6GPq96/fk
JaT5JIT5N1zheHGpkVtuWpc16BSuPEwccvRg/UZhV9ycEw9EJMUz8w2q/qyxGUqDZhAZElO2uHWn
i5tHremyVU2qvR3trOHjEGzx+zzo0HH8T3Tsvv5+54cGpy8qnp0/9mGL+0UeVEFCc58Tb65/vjG8
x+7TsV0bOiT8uRGb3aKp7lgRqj0Wxq8AAAD//wMAUEsDBBQABgAIAAAAIQC1VTAj9QAAAEwCAAAL
AM4BX3JlbHMvLnJlbHMgosoBKKAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAACMks9OwzAMxu9IvEPk++puSAihpbtMSLshVB7AJO4ftY2jJED3
9oQDgkpj29H2588/W97u5mlUHxxiL07DuihBsTNie9dqeK2fVg+gYiJnaRTHGo4cYVfd3mxfeKSU
m2LX+6iyi4saupT8I2I0HU8UC/HscqWRMFHKYWjRkxmoZdyU5T2Gvx5QLTzVwWoIB3sHqj76PPmy
tzRNb3gv5n1il06MQJ4TO8t25UNmC6nP26iaQstJgxXznNMRyfsiYwOeJtpcT/T/tjhxIkuJ0Ejg
8zzfinNA6+uBLp9oqfi9zjzip4ThTWT4YcHFD1RfAAAA//8DAFBLAwQUAAYACAAAACEAf8l62j8B
AADTBAAAGgAIAXhsL19yZWxzL3dvcmtib29rLnhtbC5yZWxzIKIEASigAAEAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAvJTRToMwFIbvTXwH0nspMJ3GrOxCY7I7o/MBunKgddCSnjrl7W3QlM0w
rog3Tc7f8P/fObRdrb+aOjqARWU0I2mckAi0MIXSFSNv26erOxKh47rgtdHASAdI1vnlxeoFau78
RyhVi5F30ciIdK69pxSFhIZjbFrQfqc0tuHOl7aiLRd7XgHNkmRJ7bEHyU88o03BiN0UPn/btT75
j3ejhDVoShcL01BTlkqMudLDjj9b8w7CeSNuK3CMDFq8U5rQ8eTFmeSRrn7iH434aEC7kebop7F7
lABHFEFC2u8sYj+rczC3c8IIXosHyX3rYSRBmoLI5oQI7Q8QQfqdSDYFk/4zTDoFs5wTBiW3ULw6
6y8hDtM5kadgbmaFcV3t73w4KNjXU/HXc8Y7/5LAkN6XtF/D/6AnT1H+DQAA//8DAFBLAwQUAAYA
CAAAACEA5XxecZ8BAADKAgAADwAAAHhsL3dvcmtib29rLnhtbIxSTY+bMBC9V+p/sHxnAQNJFIWs
SkjUPbSq2uzm7OIhWGtsZDslq6r/fQdosqnaQ0/z9ebx/IbV/blV5AdYJ43OaXwXUQK6MkLqY04f
97tgQYnzXAuujIacvoCj9+v371a9sc/fjXkmSKBdThvvu2UYuqqBlrs704HGSW1syz2W9hi6zgIX
rgHwrQpZFM3ClktNJ4al/R8OU9eygtJUpxa0n0gsKO5Rvmtk5+h6VUsFT9OLCO+6z7xF3WdFieLO
b4X0IHKaYml6+KNhT11xkmqYZtGMErQBpu2fxXy3nSVJGmziDyzYZlEZFGVSBtkuLdO4KDZsm/yi
4fpqyxd7s75vpDv89osSATU/Kb9Hoy460XmWMjYbGAZTnyT07o1sKMn5ILUwPYpb4JFeLtU8o6Qf
JwcpfINMC5YiYOp9BHlsPDbjDLeQPbyhH0+Bnxkj0aNP34bzxHjzIT6gFZjbpcTEPoh4YPgLzW7Q
mF/R7J/o5AaN+RWdjOpGcpRUcVUNFmIYRbBszvChFupPeJScfo03o5jw8huuXwEAAP//AwBQSwME
FAAGAAgAAAAhAOmmJbiCBgAAUxsAABMAAAB4bC90aGVtZS90aGVtZTEueG1s7FlPb9s2FL8P2Hcg
dG9tJ7YbB3WK2LGbrU0bxG6HHmmZllhTokDSSX0b2uOAAcO6YZcBu+0wbCvQArt0nyZbh60D+hX2
SEqyGMtL0gYb1tWHRCJ/fP/f4yN19dqDiKFDIiTlcdurXa56iMQ+H9M4aHt3hv1LGx6SCsdjzHhM
2t6cSO/a1vvvXcWbKiQRQbA+lpu47YVKJZuVivRhGMvLPCExzE24iLCCVxFUxgIfAd2IVdaq1WYl
wjT2UIwjIHt7MqE+QUNN0tvKiPcYvMZK6gGfiYEmTZwVBjue1jRCzmWXCXSIWdsDPmN+NCQPlIcY
lgom2l7V/LzK1tUK3kwXMbVibWFd3/zSdemC8XTN8BTBKGda69dbV3Zy+gbA1DKu1+t1e7WcngFg
3wdNrSxFmvX+Rq2T0SyA7OMy7W61Ua27+AL99SWZW51Op9FKZbFEDcg+1pfwG9VmfXvNwRuQxTeW
8PXOdrfbdPAGZPHNJXz/SqtZd/EGFDIaT5fQ2qH9fko9h0w42y2FbwB8o5rCFyiIhjy6NIsJj9Wq
WIvwfS76ANBAhhWNkZonZIJ9iOIujkaCYs0AbxJcmLFDvlwa0ryQ9AVNVNv7MMGQEQt6r55//+r5
U/Tq+ZPjh8+OH/50/OjR8cMfLS1n4S6Og+LCl99+9ufXH6M/nn7z8vEX5XhZxP/6wye//Px5ORAy
aCHRiy+f/PbsyYuvPv39u8cl8G2BR0X4kEZEolvkCB3wCHQzhnElJyNxvhXDEFNnBQ6Bdgnpngod
4K05ZmW4DnGNd1dA8SgDXp/dd2QdhGKmaAnnG2HkAPc4Zx0uSg1wQ/MqWHg4i4Ny5mJWxB1gfFjG
u4tjx7W9WQJVMwtKx/bdkDhi7jMcKxyQmCik5/iUkBLt7lHq2HWP+oJLPlHoHkUdTEtNMqQjJ5AW
i3ZpBH6Zl+kMrnZss3cXdTgr03qHHLpISAjMSoQfEuaY8TqeKRyVkRziiBUNfhOrsEzIwVz4RVxP
KvB0QBhHvTGRsmzNbQH6Fpx+A0O9KnX7HptHLlIoOi2jeRNzXkTu8Gk3xFFShh3QOCxiP5BTCFGM
9rkqg+9xN0P0O/gBxyvdfZcSx92nF4I7NHBEWgSInpkJ7Uso1E79jWj8d8WYUajGNgbeFeO2tw1b
U1lK7J4owatw/8HCu4Nn8T6BWF/eeN7V3Xd113vr6+6qXD5rtV0UWKi9unmwfbHpkqOVTfKEMjZQ
c0ZuStMnS9gsxn0Y1OvMAZHkh6YkhMe0uDu4QGCzBgmuPqIqHIQ4gR675mkigUxJBxIlXMLZzgyX
0tZ46NOVPRk29JnB1gOJ1R4f2+F1PZwdDXIyZssJzPkzY7SuCZyV2fqVlCio/TrMalqoM3OrGdFM
qXO45SqDD5dVg8HcmtCFIOhdwMpNOKJr1nA2wYyMtd3tBpy5xXjhIl0kQzwmqY+03ss+qhknZbFi
LgMgdkp8pM95p1itwK2lyb4Bt7M4qciuvoJd5r038VIWwQsv6bw9kY4sLiYni9FR22s11hoe8nHS
9iZwrIXHKAGvS934YRbA3ZCvhA37U5PZZPnCm61MMTcJanBTYe2+pLBTBxIh1Q6WoQ0NM5WGAIs1
Jyv/WgPMelEK2Eh/DSnWNyAY/jUpwI6ua8lkQnxVdHZhRNvOvqallM8UEYNwfIRGbCYOMLhfhyro
M6YSbidMRdAvcJWmrW2m3OKcJl3xAsvg7DhmSYjTcqtTNMtkCzd5nMtg3grigW6lshvlzq+KSfkL
UqUYxv8zVfR+AtcF62PtAR9ucgVGOl/bHhcq5FCFkpD6fQGNg6kdEC1wHQvTEFRwn2z+C3Ko/9uc
szRMWsOpTx3QAAkK+5EKBSH7UJZM9J1CrJbuXZYkSwmZiCqIKxMr9ogcEjbUNbCp93YPhRDqppqk
ZcDgTsaf+55m0CjQTU4x35waku+9Ngf+6c7HJjMo5dZh09Bk9s9FLNlV7XqzPNt7i4roiUWbVc+y
ApgVtoJWmvavKcI5t1pbsZY0XmtkwoEXlzWGwbwhSuDSB+k/sP9R4TP7cUJvqEN+ALUVwbcGTQzC
BqL6km08kC6QdnAEjZMdtMGkSVnTpq2Ttlq2WV9wp5vzPWFsLdlZ/H1OY+fNmcvOycWLNHZqYcfW
dmylqcGzJ1MUhibZQcY4xnzVKn544qP74OgduOKfMSVNMMFnJYGh9RyYPIDktxzN0q2/AAAA//8D
AFBLAwQUAAYACAAAACEAwfparSYBAADWAQAAGAAAAHhsL3dvcmtzaGVldHMvc2hlZXQyLnhtbIxR
y07DMBC8I/EP1t6J06JQVCWpkKoKDiDE6+4m68Rq7I3sLYW/x07VCokLt33N7Mxuufqyg/hEHwy5
CmZZDgJdQ61xXQXvb5urWxCBlWvVQA4r+MYAq/ryojyQ34UekUVkcKGCnnlcShmaHq0KGY3oYkeT
t4pj6jsZRo+qnUB2kPM8v5FWGQdHhqX/DwdpbRpcU7O36PhI4nFQHPWH3owB6nLa8OxFtIFPykbV
r0noHGRdtibiklnhUVdwN0vFCfBh8BB+xSI53BLtUuOhrSBPo/LP7GZyGNe1qNV+4Bc63KPpeo7n
LLJFcV6wVqwiw6g6fFS+My6IAXUcy7MFCH+ETDHTOFULEFtiJnvK+ng/jHfKs2sQmohPSVJ2/kj9
AwAA//8DAFBLAwQUAAYACAAAACEAfDIUqyYBAADWAQAAGAAAAHhsL3dvcmtzaGVldHMvc2hlZXQz
LnhtbIxRy07DMBC8I/EP1t6JU6pQVCWpkKoKDiDE6+4m68Rq7I3sLYW/x07VCokLt33N7Mxuufqy
g/hEHwy5CmZZDgJdQ61xXQXvb5urWxCBlWvVQA4r+MYAq/ryojyQ34UekUVkcKGCnnlcShmaHq0K
GY3oYkeTt4pj6jsZRo+qnUB2kNd5fiOtMg6ODEv/Hw7S2jS4pmZv0fGRxOOgOOoPvRkD1OW04dmL
aAOflI2qX5PQOci6bE3EJbPCo67gbpaKE+DD4CH8ikVyuCXapcZDW0GeRuWf2c3kMK5rUav9wC90
uEfT9RzPWWSL4rxgrVhFhlF1+Kh8Z1wQA+o4lmcLEP4ImWKmcaoWILbETPaU9fF+GO+UZ3MQmohP
SVJ2/kj9AwAA//8DAFBLAwQUAAYACAAAACEAjbVXoawgAAAAYgAAEQAAAHhsL3ZiYVByb2plY3Qu
Ymlu7HwNfBzFlWd1z0gejSR7LH9Ilgy0JX/ItiTmS7JkEBlpJFkykiUsx1aIgjWSRmisz4zGtgwG
j23ASpYk5iNg2Oye4ZI9J5DEkMQhubAxbEhMSILZcMGQ5HAuzv2UvdwG9hc47YJn7v+qqkc9o7E+
DBu4vZT0n6p+9eq9V6+qq7qruvvsiwvPP/JE7m9YQriOmVgkmsZSDXQFaQIPNsZUJAiRaDTKafhB
8i/h/yEPXISt1MYrADOQAswDsoF0IA2wAtTGGYgzgRxgAWADFgJZwCJgMbAEWApYgCuBZUAukAcs
B64ArgLWAhqQD5DsAsQrgVXAamANUAisAyh/PeIioBgoAa4GiP6X8N48sJUN4S+Etqhlg4iDbB88
O/uwFD1Gt4D6wHTBc/uDWt3TP1ZMYApvEJzbWTWrmq7QDHkWjEi6fuq/ycIb332A69X1G3m2sV4W
YCNsB7wQZH2sk/ujz8gybTqXqQrpnw8uiqdlNmR+Vhq7k+1krWwra0HsNOTPNmmDfjoHSTeF2ZSj
dnIrgpMiGsOpTcgkOv9pPKAxgM5h/fynsUA//6muCwAbQLrp/KdzcTFi/fyn8YNodP5TbDz/aVy4
CtCAFQCNAQXASiDx/KdxgsaAZOe/HXQHQH5zAaSnVMbUvcqBCmAjcA1wLVAJXAd8BPAAVUA14AVq
gFqgDtgE1AMkczPi64FGebxFxi2IbwC2Aq3ANuCjwHZgB9AGfAy4Efg40A58ArgJ2Al0AD6AdHQh
7gb88vhmGQcQ7wL6gH5gABgEhoBh4JNAEBgBQsBuYA+wFxgF9gG3ALcC+4HbgNuBA0AYUJYqaG8F
lTcxdgEEmwqBSIeBlwEKyGYH8n81Qd2sAAdjOD6FtEIZsW4fjV6LNFSf+961ezvzq574k9u95fuL
frHMApEIp/kv965IyV8S0p3++s/v/FxV9eee+9Herxbt22kDjZSnAPMAeIgHRbHII6qcJbFYompx
PjTV6gJQhptIv8L412PHuooPKi6EbSprbST95PJWWyx1v0gxVpYvUrr1CtvC7GhbO/9z4rccZ0QF
ZklBscelvJI6matzUexmZegdurMV5QTZE6a+GY3a4CVuH8Y68iEFnoEfSl8BrJK0ehnbEauHRXkL
uHtxrJeaTOnlM3j5Q8cXqySXSh0Dk4pylL4UP/GWUyYPvDfyFNH1QAQ9bYwT6cMgeIgog4ePh4z9
yfQnk7HcZJrmHtJ++NsrmlKYshIDVTsGgx75t443hxuntRON0sk24GTvYa8LK0mKW1d1mXHkxySL
JMWfFkRBDzp5klWFQsFA5+4Q82vbq3du8Q0gUanlb+vFlLdjKNjXOTRk68vPtFrvrvaNKOrd9lvt
drvT3lLuqChmNrvJ4p3HFqtZykq73V1228HM/Zv6hzp9/cpZW+uwr0u5t87Xbx7xZ3R7g35fyOLr
7F9yVUvQ333U39XvY6kN3ewJy7bg7szq2tHhITAuXr7NPzDcz3whf40/GNhjUrPurd49EhoaCKTe
Yq4xOefuiOBHw7IQxXr6SqTTAAoiNqEx4oPChzWFvURjDMK/ynhFqjgmL35Z0iyYm6i1GmSej7Mo
7JMGXuKnkLy3ibwP7pext1mHGPZF9eSv8frDFZczuwMbrj8sYLUCovYzl8sBS7Vka8X1lx9/IT6T
z1w2kWM+9C8AUfdsYn6y4/kg5i8VOcb6X875SPXXdc+2/rlQvV/2HKP+0mTGzkCDfn69Rr18tvqp
nnR9QSH5+WNDjjhvaAQWgbg9gJkSCLgKOSBS7+U3uf6p528KOy7V0Hmbh3QadTuEChk3yBP+O/L4
Hhn/RsZpMn+tjA/K+B7qughPyBb5jjx+VcZvytiRLviWyfgRGT8v47QMkd8g44My/o6MV2SKfJ+M
H5HxSzJ+U8b6uPSqtEehKRlhrYypNXRbLbgGp9a8QeYd5JwK22fglc13iXGpytOo0h0UFexD/BSm
FIpPIqaSJxCfR95y1jRyc/XQqJYfwjDvL9y1Nl9brelpKv3+85H+DnS3x3HnsYbdpZ6Hjkk7BvZ1
DfXvHhgkO/T0GhZWhd1hlCP+jSyWiZmvani4P9DlCwWGBkuafKGu3sKBfXt8/bv9RdpW3+DN/sJ8
n2Nj1y2O/LVFmn0t6X8Dck6hzzchPI6et5L1wF8LYZNqSJsMabMhnWJIp8bSwufCTg9mGNKD+fr+
Jy81X7f2+j3+kIMm6vFqs29EDfGJ+rTTXu60FzPNbJnvxTy9XMzT6m36PL1C+YE+T1v69XnaRo3G
52mtW5+nF7LH9HnaMqTP06xfztOpe9SVcp7OCPB5unV3p8Z6AoPdhWszrbaawICmthY6HKo9PE84
VFFudDgzrWu0gbBspnAL073PdPebewvNS7nrme57j3C+smpNrMMtvHMF2viuNZnW4N2lXWzdQWer
PxROP3xoRdhCFzEjB3/ZNlKYf8jECkvM9iqbY6P3xvC8TOuAEl5sz7TWDQU1NcBSHNq2Ic2h2d2Z
Vp/H5PWz/v6RQkeRFrCsLdl+0JVpzbTmNPRoz6QevGJbr79+MNN655pApbI6oPzD4gFtvebItC47
XDOwFktdqbWD3Uxr6Mm0bvGP/iGknTbVzm9i7Jn55pbta09vOKw6j6iuI6r7W0fU0iNqmecTJucu
T968ec7T602Ldq3VrtMy7JqpuCHlWs25IfOOlD4lEF7g7Q0W7i9zn7bfOZ9l1643BSt/omkHi9SM
TGtt2XPKfYcaxq5wlv3jFaWuO1L2/nD0uYwj3l3hKz+1qm5J8bOaZ8l6rczNLD9ccMRr/fHqF4o1
TasqLLlQ6szK3lB+VXZO9nHrj67KTr1+5c2aVn1VNrvzs4Vq5erF6ysd9tKPZP+xPPu09SPZV2d7
N2Y/s2uAXdHZvesR1bfZ8xk0L84ijzkS1XA/No6L8Qz0Vw20s5zeqZ7BCHFO0kHiqwIes5tfx5+Z
Qo9Ez+MMfcogx4YyE0QD6D6B5JO+Fpx5JyLRq3R9FB+HDVSehnQPwVzD9Rwz6Cnk9Ei0HLxjCXpI
7hjoowY6ybLhLKSQx85AK2mKRkdxTPwUeg38xEe0esih/JOI2wz5HuT30ugDO21M2E98Z8BXb+Aj
OUQ/D3q5gZ4j6RbIKDTQiZ/02sBP8QRiKq+BL8fAZ5PlicdioFM9PeY9ahvsmsCyL9VSSCLO2QaF
HWXZaHG6DjgBzW/ACqay9EIPBL77dks0lrRH2XUbc6BilbkwutETVZAoiqZg2DSxzHMobimKZnbj
Dt9SGI08PB6hVQjzRCSyZa2ZFUULhSAGmecibEmhBeXNZyKFObiPjPSeiGQprBQ6SeiZyMX7MjyQ
vSLzLK5DITby6HiETMTFS9VYJB0yjkVyi6KloGaaj0XM9ug7ruUpCita0xZZMxpZMxZ5i9hh5DxS
8s4fxyNWC5azyyzo8WOR0UhbhGWZz0W4wnfuH49woxaAFcR3883d0XdPkhNAiNx+IrIHt4RrLJE1
OZE1hTHJmewtchvxPkAK3kIz6EfQT26UeaORt+BY/agt8hZ1TplXH3mLLgvkUbk0MytmZn2kPFIY
yYlYYj6buCh9du7iH0ws2zxxURj8ACqD5ah3QsuvVhPIeSDfvLxYZWvB40Gj6EV41fPNYxHrfJyC
iN99+8xF8upURy6EIy8mdaQKT8WbkcvN+H4iuZSb8bTKnJMWwKBc9s4XxqkjeNg798OEfPOotGdU
2DOWzJ6sOdjj5vY0J3prC7enyZRgj/uy7Fk6B3tIcWj564n2BLg9v060Z8tl2ZM9rT3paIHI7ecu
fgVdeBH6H3og+6byhinMR2Im7617QVf4DhGN8CpGb5WNX1TZOeAM0hOIJxB3R1OwTtqAfiCCwu61
2GSaoiGZpgvnc+C3R1EeZY8h3YJ0Oc8Xl91FUUz7wDjyxoBRoA2oB8qBQiAHsAC4KObGt8k7lyJ2
VE1+/2GDBnF7YOZjLY2OpNQD0PWdWDuks9TUgZOIz0FiBAWJB7qDQRic6SZpDuuvp96h4Xrm9Vfn
Y7/+q47PNHnuHPnh23X/tLVPm279NaY/A/W9AIsLMRL9HW55vgncIdoajYpq5K/63ez0vz3x2/E3
/mdX9Td2fKXmbNdE27T6IZmkP3iX9nzBitc8x79q/Vzr5htTbaDBEMwO067/JhZLVC1abTbrv22x
dp7tTPh+83ngB5V9fFbrv9hTja0J58oSoE2mLGQdfGekTeYmS9mmLTG9vFnmqte2w8tklXptRyzV
HUv1xlL9sdRwLBWKpUZjqf2xlLB+unVxWh2fXPk2pma7Lt6CHqkobeiTl7sufhx1J0vnvi6eM6d1
8YyFGucX45PQqbcv+X8COHOR7vNFaMdQ7OV7YPfz846ox0Cj+KSMzyA+DpRj2CM6hTGZR+kJ0C3w
EKUpHEN/FqmpvxPIG5ZlT07DRyWfMuiYKklQzkPGWfB5zHfxereALK5vhQ10nVxI+ZKuof5U0mNe
zfntBv5UnhON2tWb1EY1qJIc4qeZgOTYIKcI/GmSLuTgQhuhEEike8CfA7ouJwe2kpxe+IpOHJ1u
gw6PuUQ9CT9OyOt2kOT91F/uv3Q/kU/gtv8g91+T7TuKdh+X92WabPejoLUAi3BM9ad+Q+Hcxcn7
YhvyjoOHyhOfBSAeOvYgzcMdPbyfd4Pehn5HoR97xpe68qLydCFA8XnIoXic5Jlv4XLOxO4fhSzK
tyNJ+inQsQ3xiSR8ZJ8HoEB8ZDvF9RhX9bVPkYt6SR7KJxrFFC5Fp7xh8HkAPeAGhic71HZuO/HE
BwsT15TT7ONtwDLr5D5eOetiShYT230OxAV4/sCFLb4EogNTTncyooMpNlnczos7IH8OheN1T6cm
ntPJ6G8OiubHWdnzARV9HUMmArWam6cu/4f2TL0s/6AFuya4KyBBYQubj8hGSkC34Lm3MHWZcBrv
R0/JdD5IY5SWPDlIUno1nifRZJrKWqScLDwL0yLpS1kpG6c0ZFKgmlDZDNwtHSUC0ll4vu24TM/H
kSblzMezNnaZpnvnUcljha5emd7ODotr5QT5ZEN9zJ5s1mFIvyHTuXgWbyyWLmInZZp0hQ3pUUpP
kZ/NLCro3P5splEaPOQrJn2loce1SboGcrnkz0V9j8o06Tph1CX5SYzuqyw8k/iU5Kf0WcmTD55C
gy66BiEbNETjkp900XhGdpKuekOaruqS1atN8pCuYclDuloMuk5Iugb6mOQnXWdkmnSNG9JvSH6w
i3oZ/fnnTMMP1H/OJbSpmfvHxK85yO+K0oFRmVLU6x4wHyfDcX+OlUXEYl9mtfq/sUOSyqpo3d1B
qZFeP3YrVjI7dkpWsXX4LWElqpPLsaNcFG3jViMorwC97F7s//YDOv0MhtfdeNKJrk814kfIkfEw
Yo3VqBpbraawL/Bx9xS8HKgkmQuZ2Fuhp2DcvFxYljsu43MyPivjCRmL+ijcspXsJlVlK1iHugaa
hH7iexxYwzrVT7CfIT3I/sV8kvoCynSqVJd0nruXyyDaer5XJMofBR/Vb09cvcXsT1Sxr0QarKiV
mbdAH47ILoopPM48XILgTcc6RBC+XcNuUdnNvk5/v853iqUxsTdWqWkocUvMLxCSw/aTP8eR1O05
Q8IRiA5XGnQ8jhXxNNiz33zmD1kWo5253M4vsBMn9puN9FLO/zie+bXy/bdlsW2cPtqtw7YE7dfx
dJyeXIyFVD9jrfT6kF3HFWHfcdh3CrJF/SCuylg/2suc5DPa5eb2Cm8Z6Vu4vVhmho7zKDtbe91J
7I2zq9pol3iKifrzMOynuBdxvB3U7uIqx0gPSPvIB3Oxb8tM9nmFfZPPXzhR+7kHev4CQ0RsxJiN
hDIw3cXPHHoOcvL5V6LPNdgu4/mLBii5IBUZ9W+Yq3Lwk36sK/JVT2qj2YjAVmGS519csyk6hYf8
T3r1MIUhCaEZNN3/SNIpc9PzLxY8uu6F+jv+OfxueOsTS22g0VxFTUvV08XHP2hmSSyWuPQo/DGb
9TddwQcXF6Ka78fzl+99nYl88EE9f5nL75HoLvMY98cH//xl+zT3bTM+f1kRd9/2533+8sTJ6Z/n
cH54nudAU19mSL5/ciWkiTsdPcYgQuOMIej3+m9KRj6MIn+ZfN6KzoL37zknkjaXwHBf1jHT5g2s
TV5/G3JEtfTVRDESekCXE9/MW0PgnTnE9m9qMFzTpGbDhUUQ6TDwMkCBPH8g/6Gv0Tg+8/7Rb1u+
sfQnD39s86F//tqKJ0tP3DCb/ZvtFeElC0eKqx+y3Pj7idBXnrdBIymfYf5ILJao+i/zx+XsU1A/
/6Dmj+UfivmDOry+7vee5o+NH+L5w/X/0/yRJtbA0K560OePKjlf6PNH4D/U/GGJXXpTvT3A+zt/
GO9/yknFHMPl3H91Qkey+6+KOeomdujHnS5duYubFKLNFHrAUC2ZduJtPXoDdSfWareyZrYZbwB6
+Zt8M0kR+Xj/M9ZCNO7OplQvmJ6lJWeEbrx9GhTJy/ql9UzSq4fZCPkimErIYQg/8Y3R9UE0Dd2K
cME8eZmGJ+4gvVChfY5NcW+ZueGluvewm16AYbUEmyMFeFetAP7eCA0t8MMQ3ksI4jWpAaZBfoCv
Co4gXYhV73K8n7YWfF5wDeBvCFdQRq521oQSXVzKCHJ78E6JhvcyeyEviNXFbpQVba3HZZJSC8kl
ePuzEX8F4KH3gXejVD/KVyMe4XJJF70jrKG3DOOvn1N90BLgtowIh8rf5Um8RquSrvfkNQfsLION
5Lm5eS2Zb5r5i2rkMz88YTxyYM2+HW3cBi218EoJT9dCazI5tWgdkkH+opLUshrkdeLNVT9yqB0a
4aVO3raJb5h/j28xJfYvF2QYr33oDUX6K4ZFekqnGWPxFmOBtMLoqR2wYBC9YAjvxo6gdq14N5be
+24GytAf23EU4vm0Fk21CKFGnahzM6yv5e2+GzTqfZOtbmx0d6zNnehNdeixNbDVDYuLsf9TDUoV
UrRb58BRMVADuaVIUQ2q8EexG3+C7sT7mKImbsRzb/PZnCkHUYFDwGHgDuBO4C7gCICRgX0K+DTw
V8DdwGeAzwKfA44C9wD3AvcB9wOfBx4AHgSOAQ8BDwN/DXwB+Bvgb4H/BBwHHgEeBf4zQKsOX0L8
d8B/AU4AXwa+AjwG0Oo48eA+hn0dOAk8ATwJfAP4JvAt4BTwbeAp4DvAd4H/CnwPeBr4e+D7wGng
GeBZ4B+AHwDPAT8EfgScAZ4Hfgy8APwE+CnwM+BFgGx5CfE/yvTLMv4F4leAc8CrwGvAL4FfAb8G
qNyHJVxqpGxGb63DM5p0/ovRoAlnTDPOCn2cTDYSGMeQyxkLaL4Rf2ZmVvElAlXh+4tWxDa5ew8H
8iB262fjR7oyMPF5cvJbEXo5RRdniA/km7FNcqkvQyzGmViOc3TycQBaVopGl6iXLhON0svzPKBW
7DUTmZTBJyf95UcSO/UpA3xAQY3ni0ZX/U5IyiFRn16UKMqJB9ftmFenWpgXJ4r24+iRUgr25Fa5
uKip90DR6BVxolwQRasLFOonRZGPFYV2OnRv/3vHaOQ/m65/77okk09Nnoz+56ZRf9F1UoPr6UvF
5gc2/NuL9/+h8dsP1v3rk482PEh8dOZ996XHlv/Ni42bHzl27dV4p+2jOn1DQ0Vk1U1LPd996fPa
l454gzr96w+fXfLKXzfWPd5XtOSFV9r+qNMpzoG8MIBveChbaW+zhNLpTAnbGE5/zOT4+IcpvJgf
4JU1xjxMlYfdQ/T1D7M88uNdOYaxLnY8GgjR1z30wnijjDau9MINPYx9MZY54gfv12OHeFOOJihd
FN4sG6TJSi+7DYqfjuXu9Q92p2TUjnb5+8PrbcyUsb266v/8DxtLMe8IDDrKnrldJl3OeQeQbW7y
dX3jSRszm8FX9tUCG7OYW4JDu/xdIYc128ZSM0ZC3UP9/vs6bMxKsmTm33+f8pp7egJd/iW7bSwj
Ax8E0L8H0Lf/tzaWFkabmhS2s5bejsRrgDmvUhG8h4iN/fHcWNr5+8m065+QtpjlZwX6+nJg2B24
fYUYelNw8A2I5bn88YBnIrCJa4lGd1bv3OML7oSrnr4X1WLB0q5vvjAlG9TnxuAAaRp/X/O1jCls
eDfwwFEbm8cG9nGW3xTrLArjbwtSHUa+NwFb9UrW+Ht8u/tDu5614U4o0GHTs2KWBdIe1YXEaOgE
uxqpQDCAAsJhscyGnpZ/wZ1pOMw7W7HjyMeIs+vGqaK7TBCtMF/b1CyfgiwzCzq6Al9+0sbS471F
5F9QI8sN9ge32tj8eBbpAb+DO9XRpcGpXJ7rvqTyXKchT/dvw2C3f/RN9BTRSgqr6goF9vi9/v7+
p7+tW6MwuGFgd79vq8PraEWLL2MDlwonqfdKl5OUkdzPTBK200u4F64nVwx0T3XFQCZckSJ7E3/p
+OCb6Lfx1d1GLyYPfovanrNUuG5AA4lWjrVMpwpJZtbV6wuuPaZXI5ZL5M9fJHfhbczrYbCVyc6J
4/ZryLxdvqnm7bKSeYw/1bD3F1MM4/Tuh6fYEsxCMQs6qniYob9ftwfOnnxR+UvrJt3E31n+5VbR
vfmLy/8LhaY0O88ZGraxBfEe0jW95UXnpLm5n+HbLaoJ7zPTCBofsLEMqqrOPLrPBxOe9+TXZ1mQ
RtdCDM/UCXnLIGc+ywOPDdqyAIV/WQmJuEDzQXy4PEq8jJmOlHVPhmmdg6yyr1PVo2lseHFqvYkd
wntKF8xm9IDlTB86x7pCKbiuYh518a5U1VqpWuepQWWxJSU1K03N4hek97MMdfO1qnUpU4JhMfxe
py6L3VqG6d4yE2sSq9SbmGld+yZ8cCWML664XfZiZrnCbPYyqzpfycL3VljZbQXOEnsB7vu8G9sx
AeDWde9Ie+u+kR1a844yd7vJ78Q9an9nQXNjLRYlduMzKnizffnQIOtgyuFajO81ga47anFNHmaB
l1nXodovhhc+HFYO1jJnTV15jd2NG9PS6rqqYoc97Kgurq6pLQ3XvlxVFfa6wynOsdrwMXZz0Deg
1QVg9YhWOFpetjbc7h0aGBgaNKWx9qZAV3BoZIj1hLRWnDhYYmlvrqtr8OKOwdne1NpcUnOssbHg
iO1wi+YIhyxac+fBH2iNgc6TQV9wH75cpCw49AqeqFx0yHQgf9mhx5g+C4XxWZq+TSwnvOjQtvDX
aDVmR/jUcf51ttPK0GllXe7P0p2vpS8/jc5kra9WHM/uoyvqpVdW41mUomdX/Goif0m1ZX21suzZ
2zBltWDO2vRsXqunwF91+mP0oZHc+nnO+7bMezHv04tezFv1u5fz1jl/mud8Po9+2Zd/u+HUOy/n
uX6a53o+bzNFF/Ie+trzeTal+qNTe9N916/Dw5M2ZIi1PwWXoHpK5yaaCNSjRa8mmp4Sq5eUQ/c+
FCgHNeIpNZZKwRij/9HOIzGHwaPDzNjtKQBKx0GnQSLPp2NKt2BX0Lj+a4esuQYMJLjGEtbS+T6b
8l8F070WwWnU75hN4QQe0m8ctxKykx6eBfVvZU78qu9erO3MLSy+DP0/h4repPrnppu4UX+FegtO
Be4Hos0U/hsY0vQuifQSOuaFcLfNY8Z+L+OU1+8ynz358813Pxqtq7jQd1zhq8RipViw0Hsx0aiZ
Hf60X0pR2T2pIo9yxJmRRkYiTHKZ47gU9tA8wUElHFO4U+O4hcyGKVyWJFw+yWVmywx1FrrEr0Oc
akYST6/ACZUs3IATKFmAIq4B4lTyo34tTsdWHOvTSFcIgnEDjXsKw3U3iqrkNnGRHXfkjDtyobTp
j7Q8gnCa/7I6SFOvRhpTRcvW5k1bq253tnubm5qat9zuaG9q8G5tbkUCFhDK8FNbVlLT2EgmU+1B
hIXWfdJXokVFr3hE0vQe0yE0yl+yZZEl3pYFELoR+WRLcEifQvQZRJ82MGuIW5B2EWHOqG3z1jaW
1LbVUn3JyfxWiAz7pNDAuxp9sJDCQ5K2TDbfMKfqP2SYPcFJaBT1KjDI+VSfTvlsKuZqZwkmVFT4
AFlAagSZTPiUVEO+kZrZE5JG5wOFMP/Vf8iExrMTxf/28Tzb07/DMmbNf9+aBbm1YLiEb8TkSjOu
f8TgKD696rOrPrk2NupGCgfyBpSGCCPFwSOSViG77VHdPh6Tka8lNCDREj+lSLTELzkSLfETjETL
qhEOOi001cFL/ITQ7w1xnJmBbTuPyMcvlTqXxIrEF3qJL/F5FKIlvghMtIVJrKBhLnYXSO4DI789
hW/S6Yz04fJgI1Y9b0SMvAM6vcpA12kjGMX15TtSmJWkAq9OpaXgaXU5zN4jY3m+mV5J4IajFDQr
diZ92Lu4GdpASSebA1jMgP2puqSzoFHQXa2f4Jl4ftMnBnd+8rSq6ew85xROT3xik+qR+FQn0RKf
zCFa4tM7oKVThYLwVRegW78d1vdjR81PFqcDONZ5m7CjRH96Tic9SRtncQcs7pBjkF6qE7XX8Icp
Iz0L8rqwK0MaBuClyZzFCTlUAhfKNHyk25AXgh2dKOfH/uIu7C3q9L6YNFEC/SK9MAk/5a4GEuWQ
Vcl1V3OLk+d5cW1n7INd+G7rpA+bYGsI9eyNWTmA/Stjva9Bb4WRcwzi+bUwSulQ5NXjrVIe9T/Z
gXgPor5KAWRJN8k4RcbzZJxGPSBNn131byeKLq/E5d0g5/4cEsoUtMls62KcQS+5ZK9PqnEL7pLo
NBCdUM6nX5eB6OI2XeqnoaYy/1bHhgq7t6Kuuri8psZZ7HZVVBRXlbpqi6vc7lpvqd25oXxDxW14
WqdmqGv3gH8wVGm0+urV9fjoJg8GDnEVME2ec5o8V1wePvvpr8yfvPiAIfX+/mHv0GDIPxqiCthB
2u4PjuC7XJiAhnEXiZUUl7My31XhcjqdsA0M3qZNlflVFVXV7vLycrfXCKpaS3Vlfqmz1F7tqigv
ramoEEDOJm9lfl11XYWjaoPL69zgJrhqkJFp/Xj90EhIqx0NYd3TH9QaBnuGPpFpjfnDUXmrq9zl
rClz24u9dRX2YofDW1dcXut2FdvtVfC4w2G3l1bddg0Gu2tipfDJL0jmg/ywr8sPgUZvV9qLtNi/
N9Mq/FzpLivSSp1FmsNegVSZy1Wk3SgznUmLuBKpl+ogH3L6/xUAAAD//wMAUEsDBBQABgAIAAAA
IQD+fBkssQIAAOIGAAAYAAAAeGwvd29ya3NoZWV0cy9zaGVldDEueG1slFVtb9owEP4+af/BsvqB
Sh15KRSKklQQoNB11bS+TOo3kzjEahJnsQvdv9/ZDqxh6bZ+Aefx3XN3j+9s7+Ilz9CGVoLxwsdO
18aIFhGPWbH28f3d/NMQIyFJEZOMF9THP6nAF8HHD96WV08ipVQiYCiEj1Mpy5FliSilORFdXtIC
dhJe5UTCZ7W2RFlREmunPLNc2z6zcsIKbBhG1f9w8CRhEZ3y6DmnhTQkFc2IhPxFykqBA09H+Foh
KIPekByyvlWJOtgKvJiBnyoWVTTx8dgZhY9DtaGdHhjdildrJMnqlmY0kjQGdTBSVa84f1KGS4Bs
FU4bKEoSSbahIc0yH4fnINwPHQSWEMDaR3i93kWba50g6Zgm5DmT3/h2Qdk6lRC23x30FUPEMzCH
X5QzdVgY5eTFpMVimSpLjFZUyDlTbhhFz0Ly/Hu9WVMY517tDP/ber/X/ae7ZVLQlUyJJIFX8S2C
g4NgoiSqDZyRY/dAlUjBYwdWm8BxPWsDVUc1PDHwARoa9LRpOzVor9+EZwY+GzThuYEPA14auH/W
tF4YeHjehJc1PGzCVwY+DPnZwIchx3Xih3h4024fPv6BWyDuXmG3XeEJ4HDYQlagdKKXKalojE1/
T9zRpfJkulWX887E8R/G1/ezztH4qH98MnFOMD72rASOSfXo7oTCN2kNFdg27KfvtJ+9014V0V5m
ez6LN+31RKpt5QiSgyaLpiYYmqhdleXfWZfu6KomdjXxskmsJG8nVm5vl+eqyd3J3WgKmN7WsQNc
0enhs/dd3HCFWW917R9ObMNLvQYtcx4C/jv/4Ho2v+uEgxOn2VmGydyD5vYoyZp+IdWaFQJlNAEK
uzuA1jUXn15LXmpU3U1cwnW2+0rhLaFwx9jdU4wSzuXuQ/Xx/nUKfgEAAP//AwBQSwMEFAAGAAgA
AAAhAKHnBo6hAAAAvwAAABQAAAB4bC9zaGFyZWRTdHJpbmdzLnhtbDSOTQ7CIBBG9ybegczeUl0Y
Y4AuTDyBHgDLaEnKUJnB6O3FhcuXl+/HDO80qxcWjpksbLseFNKYQ6SHhevlvDmAYvEU/JwJLXyQ
YXDrlWEW1bLEFiaR5ag1jxMmz11ekJq555K8NCwPzUtBH3hClDTrXd/vdfKRQI25krRdUJXis+Lp
z85wdEYc1XTDohh9afXBaHFG/5RuB9wXAAD//wMAUEsDBBQABgAIAAAAIQDqgNVDowEAAGQDAAAN
AAAAeGwvc3R5bGVzLnhtbKRTwW7bMAy9D+g/CLqvSgKs2AbbPQwIUKAdCjQDdpUt2RFAUYZEB/G+
vpTtOsmph12sR4p8fCTl4vHsQZxsTC5gKbf3GyksNsE47Er557D/+l2KRBqNhoC2lKNN8rG6+1Ik
GsG+Ha0lwRSYSnkk6n8qlZqj9Trdh94i37Qhek1sxk6lPlptUk7yoHabzYPy2qGsijYgJdGEAYlV
LI6qSP/ESQN7dlJVRRMgREFMz0K22YPa2znilwZXR5edrfYOxtk95U2KljjvMMQcpXLJ5Uic5ABW
AbssgB1V0WsiG3HPhljwYey5PPI0Zpop7pPoLupxu/t2laCmglVRh2h4+tetz66qANsSC42uO+aT
Qs/fOhAFz8A43QXUwFB9ZCyA22kswFve0N/2hvvcChz83tOTKSXvOg/hA3IjC5z5ZiPzX7PN3P9N
K87tLT8zXsm+Eb2WF3nfpfydnxTIlULUgwNyeEs4tc+c5nwZwSZvgHTNLzcPZ63CkzC21QPQYb0s
5QW/WOMG/2ONenWnQBNFKS/4OW9q+zBtOa2/R/UOAAD//wMAUEsDBBQABgAIAAAAIQDIgTyoqQAA
APsAAAAQAAAAeGwvY2FsY0NoYWluLnhtbETOTQrCMBAF4L3gHcLsNbULKdK0YP1f6wFCOraBZFKS
IHp7g0iz++bNMLy6fVvDXuiDdiRgsy6AISnXaxoEPO6nVQUsREm9NI5QwAcDtM1yUStpVDdKTSx9
oCBgjHHacR7UiFaGtZuQ0ubpvJUxjX7gYfIo+zAiRmt4WRRbbtMDaGrFvIB9CUynDsD/QVfOPGQe
M8+ZXTXfXnJ6zbz9yOfazRcAAP//AwBQSwMEFAAGAAgAAAAhAHlHPLZCAQAAYQIAABEACAFkb2NQ
cm9wcy9jb3JlLnhtbCCiBAEooAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIySQU/DIBiG
7yb+h4Z7C211UdJ2iZqdXGJizYw3hG9dY6EE0G7/XtputWYePML78vDwhWy5l03wBcbWrcpRHBEU
gOKtqFWVo5dyFd6gwDqmBGtaBTk6gEXL4vIi45ry1sCTaTUYV4MNPElZynWOds5pirHlO5DMRr6h
fLhtjWTOL02FNeMfrAKcELLAEhwTzDHcA0M9EdERKfiE1J+mGQCCY2hAgnIWx1GMf7oOjLR/HhiS
WVPW7qD9m466c7bgYzi197aeil3XRV06aHj/GL+uH5+Hp4a16mfFARWZ4JQbYK41RcXevauCDM82
+wE2zLq1n/W2BnF3mPXOM88b9EcoiMAL0VH/lGzS+4dyhYqExCQkaUiuSpLQ9JqS27f+6l/ne8Fx
Qx4F/kNclPGCEkKTZEY8AYoMn32K4hsAAP//AwBQSwMEFAAGAAgAAAAhAJw8u1iLAQAANAMAABAA
CAFkb2NQcm9wcy9hcHAueG1sIKIEASigAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnJNB
T+MwEIXvSPsfIt+p04IQqhwjBIs4LKJSW/ZsnElj4dqRZ4hafj2TRKXpsnvZnMbznp4+jyfqZrf1
WQsJXQyFmE5ykUGwsXRhU4j16uH8WmRIJpTGxwCF2AOKG/3jTC1SbCCRA8w4ImAhaqJmLiXaGrYG
JywHVqqYtob4mDYyVpWzcB/t+xYCyVmeX0nYEYQSyvPmK1AMifOW/je0jLbjw5fVvmFgrW6bxjtr
iG+pn5xNEWNF2c+dBa/kWFRMtwT7nhztda7k+KiW1ni442BdGY+g5LGhHsF0Q1sYl1CrluYtWIop
Q/fBY5uJ7NUgdDiFaE1yJhBjdbbh0Ne+QUr6d0xvWAMQKsmGodmXY++4dpf6ojdwcWrsAgYQFk4R
V4484HO1MIn+QnwxJu4ZBt4BZ9nxTcd8X6S9NPu3NJCOb9UPivn+IPrlwhuum1W8NwSHiZ821bI2
CUp+pIN+bKhHHnbyXchdbcIGyoPnu9Dtx8vwE+jpbJLz16/Foafkcd31JwAAAP//AwBQSwECLQAU
AAYACAAAACEATwCQPqQBAABXBgAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnht
bFBLAQItABQABgAIAAAAIQC1VTAj9QAAAEwCAAALAAAAAAAAAAAAAAAAAK4DAABfcmVscy8ucmVs
c1BLAQItABQABgAIAAAAIQB/yXraPwEAANMEAAAaAAAAAAAAAAAAAAAAAJoGAAB4bC9fcmVscy93
b3JrYm9vay54bWwucmVsc1BLAQItABQABgAIAAAAIQDlfF5xnwEAAMoCAAAPAAAAAAAAAAAAAAAA
ABkJAAB4bC93b3JrYm9vay54bWxQSwECLQAUAAYACAAAACEA6aYluIIGAABTGwAAEwAAAAAAAAAA
AAAAAADlCgAAeGwvdGhlbWUvdGhlbWUxLnhtbFBLAQItABQABgAIAAAAIQDB+lqtJgEAANYBAAAY
AAAAAAAAAAAAAAAAAJgRAAB4bC93b3Jrc2hlZXRzL3NoZWV0Mi54bWxQSwECLQAUAAYACAAAACEA
fDIUqyYBAADWAQAAGAAAAAAAAAAAAAAAAAD0EgAAeGwvd29ya3NoZWV0cy9zaGVldDMueG1sUEsB
Ai0AFAAGAAgAAAAhAI21V6GsIAAAAGIAABEAAAAAAAAAAAAAAAAAUBQAAHhsL3ZiYVByb2plY3Qu
YmluUEsBAi0AFAAGAAgAAAAhAP58GSyxAgAA4gYAABgAAAAAAAAAAAAAAAAAKzUAAHhsL3dvcmtz
aGVldHMvc2hlZXQxLnhtbFBLAQItABQABgAIAAAAIQCh5waOoQAAAL8AAAAUAAAAAAAAAAAAAAAA
ABI4AAB4bC9zaGFyZWRTdHJpbmdzLnhtbFBLAQItABQABgAIAAAAIQDqgNVDowEAAGQDAAANAAAA
AAAAAAAAAAAAAOU4AAB4bC9zdHlsZXMueG1sUEsBAi0AFAAGAAgAAAAhAMiBPKipAAAA+wAAABAA
AAAAAAAAAAAAAAAAszoAAHhsL2NhbGNDaGFpbi54bWxQSwECLQAUAAYACAAAACEAeUc8tkIBAABh
AgAAEQAAAAAAAAAAAAAAAACKOwAAZG9jUHJvcHMvY29yZS54bWxQSwECLQAUAAYACAAAACEAnDy7
WIsBAAA0AwAAEAAAAAAAAAAAAAAAAAADPgAAZG9jUHJvcHMvYXBwLnhtbFBLBQYAAAAADgAOAIkD
AADEQAAAAAA=

------=_NextPart_000_0058_01CABE22.33272790--

0
helene
3/7/2010 11:15:40 PM
This is a multi-part message in MIME format.

------=_NextPart_000_0047_01CABE39.0DDCD4F0
Content-Type: text/plain;
	format=flowed;
	charset="iso-8859-1";
	reply-type=response
Content-Transfer-Encoding: 7bit

Hello,

I wrote a VBA program and inserted a:12 in columns 1,6,11,30,92 and 104.
The outputs are column numbers (1,6,...104)  and the columns for these 12.s:
A,F,K,AD,CN and CZ.
The output is unsophisticated.

best regards,

Gabor Sebo
worksheet encl.



"Gilgamesh" <gilgamesh@dont.spam.me> wrote in message

------=_NextPart_000_0047_01CABE39.0DDCD4F0
Content-Type: application/vnd.ms-excel.sheet.macroEnabled.12;
	name="identical.xlsm"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
	filename="identical.xlsm"

UEsDBBQABgAIAAAAIQBPAJA+pAEAAFcGAAATANkBW0NvbnRlbnRfVHlwZXNdLnhtbCCi1QEooAAC
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAzFXLTsMwELwj8Q+Rr6h2AQkh1JQDjyMgAR+wtbeNqWNbXlPav2eT0gqkEB7lwCVR
HjszO7O2R+fL2hULTGSDL8WhHIoCvQ7G+lkpHh+uB6eioAzegAseS7FCEufj/b3RwyoiFVztqRRV
zvFMKdIV1kAyRPT8ZRpSDZkf00xF0HOYoToaDk+UDj6jz4PcYIjx6BKn8OxycbXk12slE+tFcbH+
r6EqBcTorIbMQtXCG1nTIEynVqNcTOAuhSfUWajx6Ja7SdZgcQcp30DNpWrpVGZpuL4eShb3BfrH
Ft6YTNDPNQuXLdhBg/I5IeWVQ9qZimJCMFQh5trJNeiGucO3hI5+1tpbMpIrW3OpspF6GPq96/fk
JaT5JIT5N1zheHGpkVtuWpc16BSuPEwccvRg/UZhV9ycEw9EJMUz8w2q/qyxGUqDZhAZElO2uHWn
i5tHremyVU2qvR3trOHjEGzx+zzo0HH8T3Tsvv5+54cGpy8qnp0/9mGL+0UeVEFCc58Tb65/vjG8
x+7TsV0bOiT8uRGb3aKp7lgRqj0Wxq8AAAD//wMAUEsDBBQABgAIAAAAIQC1VTAj9QAAAEwCAAAL
AM4BX3JlbHMvLnJlbHMgosoBKKAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAACMks9OwzAMxu9IvEPk++puSAihpbtMSLshVB7AJO4ftY2jJED3
9oQDgkpj29H2588/W97u5mlUHxxiL07DuihBsTNie9dqeK2fVg+gYiJnaRTHGo4cYVfd3mxfeKSU
m2LX+6iyi4saupT8I2I0HU8UC/HscqWRMFHKYWjRkxmoZdyU5T2Gvx5QLTzVwWoIB3sHqj76PPmy
tzRNb3gv5n1il06MQJ4TO8t25UNmC6nP26iaQstJgxXznNMRyfsiYwOeJtpcT/T/tjhxIkuJ0Ejg
8zzfinNA6+uBLp9oqfi9zjzip4ThTWT4YcHFD1RfAAAA//8DAFBLAwQUAAYACAAAACEAf8l62j8B
AADTBAAAGgAIAXhsL19yZWxzL3dvcmtib29rLnhtbC5yZWxzIKIEASigAAEAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAvJTRToMwFIbvTXwH0nspMJ3GrOxCY7I7o/MBunKgddCSnjrl7W3QlM0w
rog3Tc7f8P/fObRdrb+aOjqARWU0I2mckAi0MIXSFSNv26erOxKh47rgtdHASAdI1vnlxeoFau78
RyhVi5F30ciIdK69pxSFhIZjbFrQfqc0tuHOl7aiLRd7XgHNkmRJ7bEHyU88o03BiN0UPn/btT75
j3ejhDVoShcL01BTlkqMudLDjj9b8w7CeSNuK3CMDFq8U5rQ8eTFmeSRrn7iH434aEC7kebop7F7
lABHFEFC2u8sYj+rczC3c8IIXosHyX3rYSRBmoLI5oQI7Q8QQfqdSDYFk/4zTDoFs5wTBiW3ULw6
6y8hDtM5kadgbmaFcV3t73w4KNjXU/HXc8Y7/5LAkN6XtF/D/6AnT1H+DQAA//8DAFBLAwQUAAYA
CAAAACEA5XxecZ8BAADKAgAADwAAAHhsL3dvcmtib29rLnhtbIxSTY+bMBC9V+p/sHxnAQNJFIWs
SkjUPbSq2uzm7OIhWGtsZDslq6r/fQdosqnaQ0/z9ebx/IbV/blV5AdYJ43OaXwXUQK6MkLqY04f
97tgQYnzXAuujIacvoCj9+v371a9sc/fjXkmSKBdThvvu2UYuqqBlrs704HGSW1syz2W9hi6zgIX
rgHwrQpZFM3ClktNJ4al/R8OU9eygtJUpxa0n0gsKO5Rvmtk5+h6VUsFT9OLCO+6z7xF3WdFieLO
b4X0IHKaYml6+KNhT11xkmqYZtGMErQBpu2fxXy3nSVJGmziDyzYZlEZFGVSBtkuLdO4KDZsm/yi
4fpqyxd7s75vpDv89osSATU/Kb9Hoy460XmWMjYbGAZTnyT07o1sKMn5ILUwPYpb4JFeLtU8o6Qf
JwcpfINMC5YiYOp9BHlsPDbjDLeQPbyhH0+Bnxkj0aNP34bzxHjzIT6gFZjbpcTEPoh4YPgLzW7Q
mF/R7J/o5AaN+RWdjOpGcpRUcVUNFmIYRbBszvChFupPeJScfo03o5jw8huuXwEAAP//AwBQSwME
FAAGAAgAAAAhAOmmJbiCBgAAUxsAABMAAAB4bC90aGVtZS90aGVtZTEueG1s7FlPb9s2FL8P2Hcg
dG9tJ7YbB3WK2LGbrU0bxG6HHmmZllhTokDSSX0b2uOAAcO6YZcBu+0wbCvQArt0nyZbh60D+hX2
SEqyGMtL0gYb1tWHRCJ/fP/f4yN19dqDiKFDIiTlcdurXa56iMQ+H9M4aHt3hv1LGx6SCsdjzHhM
2t6cSO/a1vvvXcWbKiQRQbA+lpu47YVKJZuVivRhGMvLPCExzE24iLCCVxFUxgIfAd2IVdaq1WYl
wjT2UIwjIHt7MqE+QUNN0tvKiPcYvMZK6gGfiYEmTZwVBjue1jRCzmWXCXSIWdsDPmN+NCQPlIcY
lgom2l7V/LzK1tUK3kwXMbVibWFd3/zSdemC8XTN8BTBKGda69dbV3Zy+gbA1DKu1+t1e7WcngFg
3wdNrSxFmvX+Rq2T0SyA7OMy7W61Ua27+AL99SWZW51Op9FKZbFEDcg+1pfwG9VmfXvNwRuQxTeW
8PXOdrfbdPAGZPHNJXz/SqtZd/EGFDIaT5fQ2qH9fko9h0w42y2FbwB8o5rCFyiIhjy6NIsJj9Wq
WIvwfS76ANBAhhWNkZonZIJ9iOIujkaCYs0AbxJcmLFDvlwa0ryQ9AVNVNv7MMGQEQt6r55//+r5
U/Tq+ZPjh8+OH/50/OjR8cMfLS1n4S6Og+LCl99+9ufXH6M/nn7z8vEX5XhZxP/6wye//Px5ORAy
aCHRiy+f/PbsyYuvPv39u8cl8G2BR0X4kEZEolvkCB3wCHQzhnElJyNxvhXDEFNnBQ6Bdgnpngod
4K05ZmW4DnGNd1dA8SgDXp/dd2QdhGKmaAnnG2HkAPc4Zx0uSg1wQ/MqWHg4i4Ny5mJWxB1gfFjG
u4tjx7W9WQJVMwtKx/bdkDhi7jMcKxyQmCik5/iUkBLt7lHq2HWP+oJLPlHoHkUdTEtNMqQjJ5AW
i3ZpBH6Zl+kMrnZss3cXdTgr03qHHLpISAjMSoQfEuaY8TqeKRyVkRziiBUNfhOrsEzIwVz4RVxP
KvB0QBhHvTGRsmzNbQH6Fpx+A0O9KnX7HptHLlIoOi2jeRNzXkTu8Gk3xFFShh3QOCxiP5BTCFGM
9rkqg+9xN0P0O/gBxyvdfZcSx92nF4I7NHBEWgSInpkJ7Uso1E79jWj8d8WYUajGNgbeFeO2tw1b
U1lK7J4owatw/8HCu4Nn8T6BWF/eeN7V3Xd113vr6+6qXD5rtV0UWKi9unmwfbHpkqOVTfKEMjZQ
c0ZuStMnS9gsxn0Y1OvMAZHkh6YkhMe0uDu4QGCzBgmuPqIqHIQ4gR675mkigUxJBxIlXMLZzgyX
0tZ46NOVPRk29JnB1gOJ1R4f2+F1PZwdDXIyZssJzPkzY7SuCZyV2fqVlCio/TrMalqoM3OrGdFM
qXO45SqDD5dVg8HcmtCFIOhdwMpNOKJr1nA2wYyMtd3tBpy5xXjhIl0kQzwmqY+03ss+qhknZbFi
LgMgdkp8pM95p1itwK2lyb4Bt7M4qciuvoJd5r038VIWwQsv6bw9kY4sLiYni9FR22s11hoe8nHS
9iZwrIXHKAGvS934YRbA3ZCvhA37U5PZZPnCm61MMTcJanBTYe2+pLBTBxIh1Q6WoQ0NM5WGAIs1
Jyv/WgPMelEK2Eh/DSnWNyAY/jUpwI6ua8lkQnxVdHZhRNvOvqallM8UEYNwfIRGbCYOMLhfhyro
M6YSbidMRdAvcJWmrW2m3OKcJl3xAsvg7DhmSYjTcqtTNMtkCzd5nMtg3grigW6lshvlzq+KSfkL
UqUYxv8zVfR+AtcF62PtAR9ucgVGOl/bHhcq5FCFkpD6fQGNg6kdEC1wHQvTEFRwn2z+C3Ko/9uc
szRMWsOpTx3QAAkK+5EKBSH7UJZM9J1CrJbuXZYkSwmZiCqIKxMr9ogcEjbUNbCp93YPhRDqppqk
ZcDgTsaf+55m0CjQTU4x35waku+9Ngf+6c7HJjMo5dZh09Bk9s9FLNlV7XqzPNt7i4roiUWbVc+y
ApgVtoJWmvavKcI5t1pbsZY0XmtkwoEXlzWGwbwhSuDSB+k/sP9R4TP7cUJvqEN+ALUVwbcGTQzC
BqL6km08kC6QdnAEjZMdtMGkSVnTpq2Ttlq2WV9wp5vzPWFsLdlZ/H1OY+fNmcvOycWLNHZqYcfW
dmylqcGzJ1MUhibZQcY4xnzVKn544qP74OgduOKfMSVNMMFnJYGh9RyYPIDktxzN0q2/AAAA//8D
AFBLAwQUAAYACAAAACEAwfparSYBAADWAQAAGAAAAHhsL3dvcmtzaGVldHMvc2hlZXQyLnhtbIxR
y07DMBC8I/EP1t6J06JQVCWpkKoKDiDE6+4m68Rq7I3sLYW/x07VCokLt33N7Mxuufqyg/hEHwy5
CmZZDgJdQ61xXQXvb5urWxCBlWvVQA4r+MYAq/ryojyQ34UekUVkcKGCnnlcShmaHq0KGY3oYkeT
t4pj6jsZRo+qnUB2kPM8v5FWGQdHhqX/DwdpbRpcU7O36PhI4nFQHPWH3owB6nLa8OxFtIFPykbV
r0noHGRdtibiklnhUVdwN0vFCfBh8BB+xSI53BLtUuOhrSBPo/LP7GZyGNe1qNV+4Bc63KPpeo7n
LLJFcV6wVqwiw6g6fFS+My6IAXUcy7MFCH+ETDHTOFULEFtiJnvK+ng/jHfKs2sQmohPSVJ2/kj9
AwAA//8DAFBLAwQUAAYACAAAACEAfDIUqyYBAADWAQAAGAAAAHhsL3dvcmtzaGVldHMvc2hlZXQz
LnhtbIxRy07DMBC8I/EP1t6JU6pQVCWpkKoKDiDE6+4m68Rq7I3sLYW/x07VCokLt33N7Mxuufqy
g/hEHwy5CmZZDgJdQ61xXQXvb5urWxCBlWvVQA4r+MYAq/ryojyQ34UekUVkcKGCnnlcShmaHq0K
GY3oYkeTt4pj6jsZRo+qnUB2kNd5fiOtMg6ODEv/Hw7S2jS4pmZv0fGRxOOgOOoPvRkD1OW04dmL
aAOflI2qX5PQOci6bE3EJbPCo67gbpaKE+DD4CH8ikVyuCXapcZDW0GeRuWf2c3kMK5rUav9wC90
uEfT9RzPWWSL4rxgrVhFhlF1+Kh8Z1wQA+o4lmcLEP4ImWKmcaoWILbETPaU9fF+GO+UZ3MQmohP
SVJ2/kj9AwAA//8DAFBLAwQUAAYACAAAACEAjbVXoawgAAAAYgAAEQAAAHhsL3ZiYVByb2plY3Qu
Ymlu7HwNfBzFlWd1z0gejSR7LH9Ilgy0JX/ItiTmS7JkEBlpJFkykiUsx1aIgjWSRmisz4zGtgwG
j23ASpYk5iNg2Oye4ZI9J5DEkMQhubAxbEhMSILZcMGQ5HAuzv2UvdwG9hc47YJn7v+qqkc9o7E+
DBu4vZT0n6p+9eq9V6+qq7qruvvsiwvPP/JE7m9YQriOmVgkmsZSDXQFaQIPNsZUJAiRaDTKafhB
8i/h/yEPXISt1MYrADOQAswDsoF0IA2wAtTGGYgzgRxgAWADFgJZwCJgMbAEWApYgCuBZUAukAcs
B64ArgLWAhqQD5DsAsQrgVXAamANUAisAyh/PeIioBgoAa4GiP6X8N48sJUN4S+Etqhlg4iDbB88
O/uwFD1Gt4D6wHTBc/uDWt3TP1ZMYApvEJzbWTWrmq7QDHkWjEi6fuq/ycIb332A69X1G3m2sV4W
YCNsB7wQZH2sk/ujz8gybTqXqQrpnw8uiqdlNmR+Vhq7k+1krWwra0HsNOTPNmmDfjoHSTeF2ZSj
dnIrgpMiGsOpTcgkOv9pPKAxgM5h/fynsUA//6muCwAbQLrp/KdzcTFi/fyn8YNodP5TbDz/aVy4
CtCAFQCNAQXASiDx/KdxgsaAZOe/HXQHQH5zAaSnVMbUvcqBCmAjcA1wLVAJXAd8BPAAVUA14AVq
gFqgDtgE1AMkczPi64FGebxFxi2IbwC2Aq3ANuCjwHZgB9AGfAy4Efg40A58ArgJ2Al0AD6AdHQh
7gb88vhmGQcQ7wL6gH5gABgEhoBh4JNAEBgBQsBuYA+wFxgF9gG3ALcC+4HbgNuBA0AYUJYqaG8F
lTcxdgEEmwqBSIeBlwEKyGYH8n81Qd2sAAdjOD6FtEIZsW4fjV6LNFSf+961ezvzq574k9u95fuL
frHMApEIp/kv965IyV8S0p3++s/v/FxV9eee+9Herxbt22kDjZSnAPMAeIgHRbHII6qcJbFYompx
PjTV6gJQhptIv8L412PHuooPKi6EbSprbST95PJWWyx1v0gxVpYvUrr1CtvC7GhbO/9z4rccZ0QF
ZklBscelvJI6matzUexmZegdurMV5QTZE6a+GY3a4CVuH8Y68iEFnoEfSl8BrJK0ehnbEauHRXkL
uHtxrJeaTOnlM3j5Q8cXqySXSh0Dk4pylL4UP/GWUyYPvDfyFNH1QAQ9bYwT6cMgeIgog4ePh4z9
yfQnk7HcZJrmHtJ++NsrmlKYshIDVTsGgx75t443hxuntRON0sk24GTvYa8LK0mKW1d1mXHkxySL
JMWfFkRBDzp5klWFQsFA5+4Q82vbq3du8Q0gUanlb+vFlLdjKNjXOTRk68vPtFrvrvaNKOrd9lvt
drvT3lLuqChmNrvJ4p3HFqtZykq73V1228HM/Zv6hzp9/cpZW+uwr0u5t87Xbx7xZ3R7g35fyOLr
7F9yVUvQ333U39XvY6kN3ewJy7bg7szq2tHhITAuXr7NPzDcz3whf40/GNhjUrPurd49EhoaCKTe
Yq4xOefuiOBHw7IQxXr6SqTTAAoiNqEx4oPChzWFvURjDMK/ynhFqjgmL35Z0iyYm6i1GmSej7Mo
7JMGXuKnkLy3ibwP7pext1mHGPZF9eSv8frDFZczuwMbrj8sYLUCovYzl8sBS7Vka8X1lx9/IT6T
z1w2kWM+9C8AUfdsYn6y4/kg5i8VOcb6X875SPXXdc+2/rlQvV/2HKP+0mTGzkCDfn69Rr18tvqp
nnR9QSH5+WNDjjhvaAQWgbg9gJkSCLgKOSBS7+U3uf6p528KOy7V0Hmbh3QadTuEChk3yBP+O/L4
Hhn/RsZpMn+tjA/K+B7qughPyBb5jjx+VcZvytiRLviWyfgRGT8v47QMkd8g44My/o6MV2SKfJ+M
H5HxSzJ+U8b6uPSqtEehKRlhrYypNXRbLbgGp9a8QeYd5JwK22fglc13iXGpytOo0h0UFexD/BSm
FIpPIqaSJxCfR95y1jRyc/XQqJYfwjDvL9y1Nl9brelpKv3+85H+DnS3x3HnsYbdpZ6Hjkk7BvZ1
DfXvHhgkO/T0GhZWhd1hlCP+jSyWiZmvani4P9DlCwWGBkuafKGu3sKBfXt8/bv9RdpW3+DN/sJ8
n2Nj1y2O/LVFmn0t6X8Dck6hzzchPI6et5L1wF8LYZNqSJsMabMhnWJIp8bSwufCTg9mGNKD+fr+
Jy81X7f2+j3+kIMm6vFqs29EDfGJ+rTTXu60FzPNbJnvxTy9XMzT6m36PL1C+YE+T1v69XnaRo3G
52mtW5+nF7LH9HnaMqTP06xfztOpe9SVcp7OCPB5unV3p8Z6AoPdhWszrbaawICmthY6HKo9PE84
VFFudDgzrWu0gbBspnAL073PdPebewvNS7nrme57j3C+smpNrMMtvHMF2viuNZnW4N2lXWzdQWer
PxROP3xoRdhCFzEjB3/ZNlKYf8jECkvM9iqbY6P3xvC8TOuAEl5sz7TWDQU1NcBSHNq2Ic2h2d2Z
Vp/H5PWz/v6RQkeRFrCsLdl+0JVpzbTmNPRoz6QevGJbr79+MNN655pApbI6oPzD4gFtvebItC47
XDOwFktdqbWD3Uxr6Mm0bvGP/iGknTbVzm9i7Jn55pbta09vOKw6j6iuI6r7W0fU0iNqmecTJucu
T968ec7T602Ldq3VrtMy7JqpuCHlWs25IfOOlD4lEF7g7Q0W7i9zn7bfOZ9l1643BSt/omkHi9SM
TGtt2XPKfYcaxq5wlv3jFaWuO1L2/nD0uYwj3l3hKz+1qm5J8bOaZ8l6rczNLD9ccMRr/fHqF4o1
TasqLLlQ6szK3lB+VXZO9nHrj67KTr1+5c2aVn1VNrvzs4Vq5erF6ysd9tKPZP+xPPu09SPZV2d7
N2Y/s2uAXdHZvesR1bfZ8xk0L84ijzkS1XA/No6L8Qz0Vw20s5zeqZ7BCHFO0kHiqwIes5tfx5+Z
Qo9Ez+MMfcogx4YyE0QD6D6B5JO+Fpx5JyLRq3R9FB+HDVSehnQPwVzD9Rwz6Cnk9Ei0HLxjCXpI
7hjoowY6ybLhLKSQx85AK2mKRkdxTPwUeg38xEe0esih/JOI2wz5HuT30ugDO21M2E98Z8BXb+Aj
OUQ/D3q5gZ4j6RbIKDTQiZ/02sBP8QRiKq+BL8fAZ5PlicdioFM9PeY9ahvsmsCyL9VSSCLO2QaF
HWXZaHG6DjgBzW/ACqay9EIPBL77dks0lrRH2XUbc6BilbkwutETVZAoiqZg2DSxzHMobimKZnbj
Dt9SGI08PB6hVQjzRCSyZa2ZFUULhSAGmecibEmhBeXNZyKFObiPjPSeiGQprBQ6SeiZyMX7MjyQ
vSLzLK5DITby6HiETMTFS9VYJB0yjkVyi6KloGaaj0XM9ug7ruUpCita0xZZMxpZMxZ5i9hh5DxS
8s4fxyNWC5azyyzo8WOR0UhbhGWZz0W4wnfuH49woxaAFcR3883d0XdPkhNAiNx+IrIHt4RrLJE1
OZE1hTHJmewtchvxPkAK3kIz6EfQT26UeaORt+BY/agt8hZ1TplXH3mLLgvkUbk0MytmZn2kPFIY
yYlYYj6buCh9du7iH0ws2zxxURj8ACqD5ah3QsuvVhPIeSDfvLxYZWvB40Gj6EV41fPNYxHrfJyC
iN99+8xF8upURy6EIy8mdaQKT8WbkcvN+H4iuZSb8bTKnJMWwKBc9s4XxqkjeNg798OEfPOotGdU
2DOWzJ6sOdjj5vY0J3prC7enyZRgj/uy7Fk6B3tIcWj564n2BLg9v060Z8tl2ZM9rT3paIHI7ecu
fgVdeBH6H3og+6byhinMR2Im7617QVf4DhGN8CpGb5WNX1TZOeAM0hOIJxB3R1OwTtqAfiCCwu61
2GSaoiGZpgvnc+C3R1EeZY8h3YJ0Oc8Xl91FUUz7wDjyxoBRoA2oB8qBQiAHsAC4KObGt8k7lyJ2
VE1+/2GDBnF7YOZjLY2OpNQD0PWdWDuks9TUgZOIz0FiBAWJB7qDQRic6SZpDuuvp96h4Xrm9Vfn
Y7/+q47PNHnuHPnh23X/tLVPm279NaY/A/W9AIsLMRL9HW55vgncIdoajYpq5K/63ez0vz3x2/E3
/mdX9Td2fKXmbNdE27T6IZmkP3iX9nzBitc8x79q/Vzr5htTbaDBEMwO067/JhZLVC1abTbrv22x
dp7tTPh+83ngB5V9fFbrv9hTja0J58oSoE2mLGQdfGekTeYmS9mmLTG9vFnmqte2w8tklXptRyzV
HUv1xlL9sdRwLBWKpUZjqf2xlLB+unVxWh2fXPk2pma7Lt6CHqkobeiTl7sufhx1J0vnvi6eM6d1
8YyFGucX45PQqbcv+X8COHOR7vNFaMdQ7OV7YPfz846ox0Cj+KSMzyA+DpRj2CM6hTGZR+kJ0C3w
EKUpHEN/FqmpvxPIG5ZlT07DRyWfMuiYKklQzkPGWfB5zHfxereALK5vhQ10nVxI+ZKuof5U0mNe
zfntBv5UnhON2tWb1EY1qJIc4qeZgOTYIKcI/GmSLuTgQhuhEEike8CfA7ouJwe2kpxe+IpOHJ1u
gw6PuUQ9CT9OyOt2kOT91F/uv3Q/kU/gtv8g91+T7TuKdh+X92WabPejoLUAi3BM9ad+Q+Hcxcn7
YhvyjoOHyhOfBSAeOvYgzcMdPbyfd4Pehn5HoR97xpe68qLydCFA8XnIoXic5Jlv4XLOxO4fhSzK
tyNJ+inQsQ3xiSR8ZJ8HoEB8ZDvF9RhX9bVPkYt6SR7KJxrFFC5Fp7xh8HkAPeAGhic71HZuO/HE
BwsT15TT7ONtwDLr5D5eOetiShYT230OxAV4/sCFLb4EogNTTncyooMpNlnczos7IH8OheN1T6cm
ntPJ6G8OiubHWdnzARV9HUMmArWam6cu/4f2TL0s/6AFuya4KyBBYQubj8hGSkC34Lm3MHWZcBrv
R0/JdD5IY5SWPDlIUno1nifRZJrKWqScLDwL0yLpS1kpG6c0ZFKgmlDZDNwtHSUC0ll4vu24TM/H
kSblzMezNnaZpnvnUcljha5emd7ODotr5QT5ZEN9zJ5s1mFIvyHTuXgWbyyWLmInZZp0hQ3pUUpP
kZ/NLCro3P5splEaPOQrJn2loce1SboGcrnkz0V9j8o06Tph1CX5SYzuqyw8k/iU5Kf0WcmTD55C
gy66BiEbNETjkp900XhGdpKuekOaruqS1atN8pCuYclDuloMuk5Iugb6mOQnXWdkmnSNG9JvSH6w
i3oZ/fnnTMMP1H/OJbSpmfvHxK85yO+K0oFRmVLU6x4wHyfDcX+OlUXEYl9mtfq/sUOSyqpo3d1B
qZFeP3YrVjI7dkpWsXX4LWElqpPLsaNcFG3jViMorwC97F7s//YDOv0MhtfdeNKJrk814kfIkfEw
Yo3VqBpbraawL/Bx9xS8HKgkmQuZ2Fuhp2DcvFxYljsu43MyPivjCRmL+ijcspXsJlVlK1iHugaa
hH7iexxYwzrVT7CfIT3I/sV8kvoCynSqVJd0nruXyyDaer5XJMofBR/Vb09cvcXsT1Sxr0QarKiV
mbdAH47ILoopPM48XILgTcc6RBC+XcNuUdnNvk5/v853iqUxsTdWqWkocUvMLxCSw/aTP8eR1O05
Q8IRiA5XGnQ8jhXxNNiz33zmD1kWo5253M4vsBMn9puN9FLO/zie+bXy/bdlsW2cPtqtw7YE7dfx
dJyeXIyFVD9jrfT6kF3HFWHfcdh3CrJF/SCuylg/2suc5DPa5eb2Cm8Z6Vu4vVhmho7zKDtbe91J
7I2zq9pol3iKifrzMOynuBdxvB3U7uIqx0gPSPvIB3Oxb8tM9nmFfZPPXzhR+7kHev4CQ0RsxJiN
hDIw3cXPHHoOcvL5V6LPNdgu4/mLBii5IBUZ9W+Yq3Lwk36sK/JVT2qj2YjAVmGS519csyk6hYf8
T3r1MIUhCaEZNN3/SNIpc9PzLxY8uu6F+jv+OfxueOsTS22g0VxFTUvV08XHP2hmSSyWuPQo/DGb
9TddwQcXF6Ka78fzl+99nYl88EE9f5nL75HoLvMY98cH//xl+zT3bTM+f1kRd9/2533+8sTJ6Z/n
cH54nudAU19mSL5/ciWkiTsdPcYgQuOMIej3+m9KRj6MIn+ZfN6KzoL37zknkjaXwHBf1jHT5g2s
TV5/G3JEtfTVRDESekCXE9/MW0PgnTnE9m9qMFzTpGbDhUUQ6TDwMkCBPH8g/6Gv0Tg+8/7Rb1u+
sfQnD39s86F//tqKJ0tP3DCb/ZvtFeElC0eKqx+y3Pj7idBXnrdBIymfYf5ILJao+i/zx+XsU1A/
/6Dmj+UfivmDOry+7vee5o+NH+L5w/X/0/yRJtbA0K560OePKjlf6PNH4D/U/GGJXXpTvT3A+zt/
GO9/yknFHMPl3H91Qkey+6+KOeomdujHnS5duYubFKLNFHrAUC2ZduJtPXoDdSfWareyZrYZbwB6
+Zt8M0kR+Xj/M9ZCNO7OplQvmJ6lJWeEbrx9GhTJy/ql9UzSq4fZCPkimErIYQg/8Y3R9UE0Dd2K
cME8eZmGJ+4gvVChfY5NcW+ZueGluvewm16AYbUEmyMFeFetAP7eCA0t8MMQ3ksI4jWpAaZBfoCv
Co4gXYhV73K8n7YWfF5wDeBvCFdQRq521oQSXVzKCHJ78E6JhvcyeyEviNXFbpQVba3HZZJSC8kl
ePuzEX8F4KH3gXejVD/KVyMe4XJJF70jrKG3DOOvn1N90BLgtowIh8rf5Um8RquSrvfkNQfsLION
5Lm5eS2Zb5r5i2rkMz88YTxyYM2+HW3cBi218EoJT9dCazI5tWgdkkH+opLUshrkdeLNVT9yqB0a
4aVO3raJb5h/j28xJfYvF2QYr33oDUX6K4ZFekqnGWPxFmOBtMLoqR2wYBC9YAjvxo6gdq14N5be
+24GytAf23EU4vm0Fk21CKFGnahzM6yv5e2+GzTqfZOtbmx0d6zNnehNdeixNbDVDYuLsf9TDUoV
UrRb58BRMVADuaVIUQ2q8EexG3+C7sT7mKImbsRzb/PZnCkHUYFDwGHgDuBO4C7gCICRgX0K+DTw
V8DdwGeAzwKfA44C9wD3AvcB9wOfBx4AHgSOAQ8BDwN/DXwB+Bvgb4H/BBwHHgEeBf4zQKsOX0L8
d8B/AU4AXwa+AjwG0Oo48eA+hn0dOAk8ATwJfAP4JvAt4BTwbeAp4DvAd4H/CnwPeBr4e+D7wGng
GeBZ4B+AHwDPAT8EfgScAZ4Hfgy8APwE+CnwM+BFgGx5CfE/yvTLMv4F4leAc8CrwGvAL4FfAb8G
qNyHJVxqpGxGb63DM5p0/ovRoAlnTDPOCn2cTDYSGMeQyxkLaL4Rf2ZmVvElAlXh+4tWxDa5ew8H
8iB262fjR7oyMPF5cvJbEXo5RRdniA/km7FNcqkvQyzGmViOc3TycQBaVopGl6iXLhON0svzPKBW
7DUTmZTBJyf95UcSO/UpA3xAQY3ni0ZX/U5IyiFRn16UKMqJB9ftmFenWpgXJ4r24+iRUgr25Fa5
uKip90DR6BVxolwQRasLFOonRZGPFYV2OnRv/3vHaOQ/m65/77okk09Nnoz+56ZRf9F1UoPr6UvF
5gc2/NuL9/+h8dsP1v3rk482PEh8dOZ996XHlv/Ni42bHzl27dV4p+2jOn1DQ0Vk1U1LPd996fPa
l454gzr96w+fXfLKXzfWPd5XtOSFV9r+qNMpzoG8MIBveChbaW+zhNLpTAnbGE5/zOT4+IcpvJgf
4JU1xjxMlYfdQ/T1D7M88uNdOYaxLnY8GgjR1z30wnijjDau9MINPYx9MZY54gfv12OHeFOOJihd
FN4sG6TJSi+7DYqfjuXu9Q92p2TUjnb5+8PrbcyUsb266v/8DxtLMe8IDDrKnrldJl3OeQeQbW7y
dX3jSRszm8FX9tUCG7OYW4JDu/xdIYc128ZSM0ZC3UP9/vs6bMxKsmTm33+f8pp7egJd/iW7bSwj
Ax8E0L8H0Lf/tzaWFkabmhS2s5bejsRrgDmvUhG8h4iN/fHcWNr5+8m065+QtpjlZwX6+nJg2B24
fYUYelNw8A2I5bn88YBnIrCJa4lGd1bv3OML7oSrnr4X1WLB0q5vvjAlG9TnxuAAaRp/X/O1jCls
eDfwwFEbm8cG9nGW3xTrLArjbwtSHUa+NwFb9UrW+Ht8u/tDu5614U4o0GHTs2KWBdIe1YXEaOgE
uxqpQDCAAsJhscyGnpZ/wZ1pOMw7W7HjyMeIs+vGqaK7TBCtMF/b1CyfgiwzCzq6Al9+0sbS471F
5F9QI8sN9ge32tj8eBbpAb+DO9XRpcGpXJ7rvqTyXKchT/dvw2C3f/RN9BTRSgqr6goF9vi9/v7+
p7+tW6MwuGFgd79vq8PraEWLL2MDlwonqfdKl5OUkdzPTBK200u4F64nVwx0T3XFQCZckSJ7E3/p
+OCb6Lfx1d1GLyYPfovanrNUuG5AA4lWjrVMpwpJZtbV6wuuPaZXI5ZL5M9fJHfhbczrYbCVyc6J
4/ZryLxdvqnm7bKSeYw/1bD3F1MM4/Tuh6fYEsxCMQs6qniYob9ftwfOnnxR+UvrJt3E31n+5VbR
vfmLy/8LhaY0O88ZGraxBfEe0jW95UXnpLm5n+HbLaoJ7zPTCBofsLEMqqrOPLrPBxOe9+TXZ1mQ
RtdCDM/UCXnLIGc+ywOPDdqyAIV/WQmJuEDzQXy4PEq8jJmOlHVPhmmdg6yyr1PVo2lseHFqvYkd
wntKF8xm9IDlTB86x7pCKbiuYh518a5U1VqpWuepQWWxJSU1K03N4hek97MMdfO1qnUpU4JhMfxe
py6L3VqG6d4yE2sSq9SbmGld+yZ8cCWML664XfZiZrnCbPYyqzpfycL3VljZbQXOEnsB7vu8G9sx
AeDWde9Ie+u+kR1a844yd7vJ78Q9an9nQXNjLRYlduMzKnizffnQIOtgyuFajO81ga47anFNHmaB
l1nXodovhhc+HFYO1jJnTV15jd2NG9PS6rqqYoc97Kgurq6pLQ3XvlxVFfa6wynOsdrwMXZz0Deg
1QVg9YhWOFpetjbc7h0aGBgaNKWx9qZAV3BoZIj1hLRWnDhYYmlvrqtr8OKOwdne1NpcUnOssbHg
iO1wi+YIhyxac+fBH2iNgc6TQV9wH75cpCw49AqeqFx0yHQgf9mhx5g+C4XxWZq+TSwnvOjQtvDX
aDVmR/jUcf51ttPK0GllXe7P0p2vpS8/jc5kra9WHM/uoyvqpVdW41mUomdX/Goif0m1ZX21suzZ
2zBltWDO2vRsXqunwF91+mP0oZHc+nnO+7bMezHv04tezFv1u5fz1jl/mud8Po9+2Zd/u+HUOy/n
uX6a53o+bzNFF/Ie+trzeTal+qNTe9N916/Dw5M2ZIi1PwWXoHpK5yaaCNSjRa8mmp4Sq5eUQ/c+
FCgHNeIpNZZKwRij/9HOIzGHwaPDzNjtKQBKx0GnQSLPp2NKt2BX0Lj+a4esuQYMJLjGEtbS+T6b
8l8F070WwWnU75hN4QQe0m8ctxKykx6eBfVvZU78qu9erO3MLSy+DP0/h4repPrnppu4UX+FegtO
Be4Hos0U/hsY0vQuifQSOuaFcLfNY8Z+L+OU1+8ynz358813Pxqtq7jQd1zhq8RipViw0Hsx0aiZ
Hf60X0pR2T2pIo9yxJmRRkYiTHKZ47gU9tA8wUElHFO4U+O4hcyGKVyWJFw+yWVmywx1FrrEr0Oc
akYST6/ACZUs3IATKFmAIq4B4lTyo34tTsdWHOvTSFcIgnEDjXsKw3U3iqrkNnGRHXfkjDtyobTp
j7Q8gnCa/7I6SFOvRhpTRcvW5k1bq253tnubm5qat9zuaG9q8G5tbkUCFhDK8FNbVlLT2EgmU+1B
hIXWfdJXokVFr3hE0vQe0yE0yl+yZZEl3pYFELoR+WRLcEifQvQZRJ82MGuIW5B2EWHOqG3z1jaW
1LbVUn3JyfxWiAz7pNDAuxp9sJDCQ5K2TDbfMKfqP2SYPcFJaBT1KjDI+VSfTvlsKuZqZwkmVFT4
AFlAagSZTPiUVEO+kZrZE5JG5wOFMP/Vf8iExrMTxf/28Tzb07/DMmbNf9+aBbm1YLiEb8TkSjOu
f8TgKD696rOrPrk2NupGCgfyBpSGCCPFwSOSViG77VHdPh6Tka8lNCDREj+lSLTELzkSLfETjETL
qhEOOi001cFL/ITQ7w1xnJmBbTuPyMcvlTqXxIrEF3qJL/F5FKIlvghMtIVJrKBhLnYXSO4DI789
hW/S6Yz04fJgI1Y9b0SMvAM6vcpA12kjGMX15TtSmJWkAq9OpaXgaXU5zN4jY3m+mV5J4IajFDQr
diZ92Lu4GdpASSebA1jMgP2puqSzoFHQXa2f4Jl4ftMnBnd+8rSq6ew85xROT3xik+qR+FQn0RKf
zCFa4tM7oKVThYLwVRegW78d1vdjR81PFqcDONZ5m7CjRH96Tic9SRtncQcs7pBjkF6qE7XX8Icp
Iz0L8rqwK0MaBuClyZzFCTlUAhfKNHyk25AXgh2dKOfH/uIu7C3q9L6YNFEC/SK9MAk/5a4GEuWQ
Vcl1V3OLk+d5cW1n7INd+G7rpA+bYGsI9eyNWTmA/Stjva9Bb4WRcwzi+bUwSulQ5NXjrVIe9T/Z
gXgPor5KAWRJN8k4RcbzZJxGPSBNn131byeKLq/E5d0g5/4cEsoUtMls62KcQS+5ZK9PqnEL7pLo
NBCdUM6nX5eB6OI2XeqnoaYy/1bHhgq7t6Kuuri8psZZ7HZVVBRXlbpqi6vc7lpvqd25oXxDxW14
WqdmqGv3gH8wVGm0+urV9fjoJg8GDnEVME2ec5o8V1wePvvpr8yfvPiAIfX+/mHv0GDIPxqiCthB
2u4PjuC7XJiAhnEXiZUUl7My31XhcjqdsA0M3qZNlflVFVXV7vLycrfXCKpaS3Vlfqmz1F7tqigv
ramoEEDOJm9lfl11XYWjaoPL69zgJrhqkJFp/Xj90EhIqx0NYd3TH9QaBnuGPpFpjfnDUXmrq9zl
rClz24u9dRX2YofDW1dcXut2FdvtVfC4w2G3l1bddg0Gu2tipfDJL0jmg/ywr8sPgUZvV9qLtNi/
N9Mq/FzpLivSSp1FmsNegVSZy1Wk3SgznUmLuBKpl+ogH3L6/xUAAAD//wMAUEsDBBQABgAIAAAA
IQD+fBkssQIAAOIGAAAYAAAAeGwvd29ya3NoZWV0cy9zaGVldDEueG1slFVtb9owEP4+af/BsvqB
Sh15KRSKklQQoNB11bS+TOo3kzjEahJnsQvdv9/ZDqxh6bZ+Aefx3XN3j+9s7+Ilz9CGVoLxwsdO
18aIFhGPWbH28f3d/NMQIyFJEZOMF9THP6nAF8HHD96WV08ipVQiYCiEj1Mpy5FliSilORFdXtIC
dhJe5UTCZ7W2RFlREmunPLNc2z6zcsIKbBhG1f9w8CRhEZ3y6DmnhTQkFc2IhPxFykqBA09H+Foh
KIPekByyvlWJOtgKvJiBnyoWVTTx8dgZhY9DtaGdHhjdildrJMnqlmY0kjQGdTBSVa84f1KGS4Bs
FU4bKEoSSbahIc0yH4fnINwPHQSWEMDaR3i93kWba50g6Zgm5DmT3/h2Qdk6lRC23x30FUPEMzCH
X5QzdVgY5eTFpMVimSpLjFZUyDlTbhhFz0Ly/Hu9WVMY517tDP/ber/X/ae7ZVLQlUyJJIFX8S2C
g4NgoiSqDZyRY/dAlUjBYwdWm8BxPWsDVUc1PDHwARoa9LRpOzVor9+EZwY+GzThuYEPA14auH/W
tF4YeHjehJc1PGzCVwY+DPnZwIchx3Xih3h4024fPv6BWyDuXmG3XeEJ4HDYQlagdKKXKalojE1/
T9zRpfJkulWX887E8R/G1/ezztH4qH98MnFOMD72rASOSfXo7oTCN2kNFdg27KfvtJ+9014V0V5m
ez6LN+31RKpt5QiSgyaLpiYYmqhdleXfWZfu6KomdjXxskmsJG8nVm5vl+eqyd3J3WgKmN7WsQNc
0enhs/dd3HCFWW917R9ObMNLvQYtcx4C/jv/4Ho2v+uEgxOn2VmGydyD5vYoyZp+IdWaFQJlNAEK
uzuA1jUXn15LXmpU3U1cwnW2+0rhLaFwx9jdU4wSzuXuQ/Xx/nUKfgEAAP//AwBQSwMEFAAGAAgA
AAAhAKHnBo6hAAAAvwAAABQAAAB4bC9zaGFyZWRTdHJpbmdzLnhtbDSOTQ7CIBBG9ybegczeUl0Y
Y4AuTDyBHgDLaEnKUJnB6O3FhcuXl+/HDO80qxcWjpksbLseFNKYQ6SHhevlvDmAYvEU/JwJLXyQ
YXDrlWEW1bLEFiaR5ag1jxMmz11ekJq555K8NCwPzUtBH3hClDTrXd/vdfKRQI25krRdUJXis+Lp
z85wdEYc1XTDohh9afXBaHFG/5RuB9wXAAD//wMAUEsDBBQABgAIAAAAIQDqgNVDowEAAGQDAAAN
AAAAeGwvc3R5bGVzLnhtbKRTwW7bMAy9D+g/CLqvSgKs2AbbPQwIUKAdCjQDdpUt2RFAUYZEB/G+
vpTtOsmph12sR4p8fCTl4vHsQZxsTC5gKbf3GyksNsE47Er557D/+l2KRBqNhoC2lKNN8rG6+1Ik
GsG+Ha0lwRSYSnkk6n8qlZqj9Trdh94i37Qhek1sxk6lPlptUk7yoHabzYPy2qGsijYgJdGEAYlV
LI6qSP/ESQN7dlJVRRMgREFMz0K22YPa2znilwZXR5edrfYOxtk95U2KljjvMMQcpXLJ5Uic5ABW
AbssgB1V0WsiG3HPhljwYey5PPI0Zpop7pPoLupxu/t2laCmglVRh2h4+tetz66qANsSC42uO+aT
Qs/fOhAFz8A43QXUwFB9ZCyA22kswFve0N/2hvvcChz83tOTKSXvOg/hA3IjC5z5ZiPzX7PN3P9N
K87tLT8zXsm+Eb2WF3nfpfydnxTIlULUgwNyeEs4tc+c5nwZwSZvgHTNLzcPZ63CkzC21QPQYb0s
5QW/WOMG/2ONenWnQBNFKS/4OW9q+zBtOa2/R/UOAAD//wMAUEsDBBQABgAIAAAAIQDIgTyoqQAA
APsAAAAQAAAAeGwvY2FsY0NoYWluLnhtbETOTQrCMBAF4L3gHcLsNbULKdK0YP1f6wFCOraBZFKS
IHp7g0iz++bNMLy6fVvDXuiDdiRgsy6AISnXaxoEPO6nVQUsREm9NI5QwAcDtM1yUStpVDdKTSx9
oCBgjHHacR7UiFaGtZuQ0ubpvJUxjX7gYfIo+zAiRmt4WRRbbtMDaGrFvIB9CUynDsD/QVfOPGQe
M8+ZXTXfXnJ6zbz9yOfazRcAAP//AwBQSwMEFAAGAAgAAAAhAHlHPLZCAQAAYQIAABEACAFkb2NQ
cm9wcy9jb3JlLnhtbCCiBAEooAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIySQU/DIBiG
7yb+h4Z7C211UdJ2iZqdXGJizYw3hG9dY6EE0G7/XtputWYePML78vDwhWy5l03wBcbWrcpRHBEU
gOKtqFWVo5dyFd6gwDqmBGtaBTk6gEXL4vIi45ry1sCTaTUYV4MNPElZynWOds5pirHlO5DMRr6h
fLhtjWTOL02FNeMfrAKcELLAEhwTzDHcA0M9EdERKfiE1J+mGQCCY2hAgnIWx1GMf7oOjLR/HhiS
WVPW7qD9m466c7bgYzi197aeil3XRV06aHj/GL+uH5+Hp4a16mfFARWZ4JQbYK41RcXevauCDM82
+wE2zLq1n/W2BnF3mPXOM88b9EcoiMAL0VH/lGzS+4dyhYqExCQkaUiuSpLQ9JqS27f+6l/ne8Fx
Qx4F/kNclPGCEkKTZEY8AYoMn32K4hsAAP//AwBQSwMEFAAGAAgAAAAhAJw8u1iLAQAANAMAABAA
CAFkb2NQcm9wcy9hcHAueG1sIKIEASigAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnJNB
T+MwEIXvSPsfIt+p04IQqhwjBIs4LKJSW/ZsnElj4dqRZ4hafj2TRKXpsnvZnMbznp4+jyfqZrf1
WQsJXQyFmE5ykUGwsXRhU4j16uH8WmRIJpTGxwCF2AOKG/3jTC1SbCCRA8w4ImAhaqJmLiXaGrYG
JywHVqqYtob4mDYyVpWzcB/t+xYCyVmeX0nYEYQSyvPmK1AMifOW/je0jLbjw5fVvmFgrW6bxjtr
iG+pn5xNEWNF2c+dBa/kWFRMtwT7nhztda7k+KiW1ni442BdGY+g5LGhHsF0Q1sYl1CrluYtWIop
Q/fBY5uJ7NUgdDiFaE1yJhBjdbbh0Ne+QUr6d0xvWAMQKsmGodmXY++4dpf6ojdwcWrsAgYQFk4R
V4484HO1MIn+QnwxJu4ZBt4BZ9nxTcd8X6S9NPu3NJCOb9UPivn+IPrlwhuum1W8NwSHiZ821bI2
CUp+pIN+bKhHHnbyXchdbcIGyoPnu9Dtx8vwE+jpbJLz16/Foafkcd31JwAAAP//AwBQSwECLQAU
AAYACAAAACEATwCQPqQBAABXBgAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnht
bFBLAQItABQABgAIAAAAIQC1VTAj9QAAAEwCAAALAAAAAAAAAAAAAAAAAK4DAABfcmVscy8ucmVs
c1BLAQItABQABgAIAAAAIQB/yXraPwEAANMEAAAaAAAAAAAAAAAAAAAAAJoGAAB4bC9fcmVscy93
b3JrYm9vay54bWwucmVsc1BLAQItABQABgAIAAAAIQDlfF5xnwEAAMoCAAAPAAAAAAAAAAAAAAAA
ABkJAAB4bC93b3JrYm9vay54bWxQSwECLQAUAAYACAAAACEA6aYluIIGAABTGwAAEwAAAAAAAAAA
AAAAAADlCgAAeGwvdGhlbWUvdGhlbWUxLnhtbFBLAQItABQABgAIAAAAIQDB+lqtJgEAANYBAAAY
AAAAAAAAAAAAAAAAAJgRAAB4bC93b3Jrc2hlZXRzL3NoZWV0Mi54bWxQSwECLQAUAAYACAAAACEA
fDIUqyYBAADWAQAAGAAAAAAAAAAAAAAAAAD0EgAAeGwvd29ya3NoZWV0cy9zaGVldDMueG1sUEsB
Ai0AFAAGAAgAAAAhAI21V6GsIAAAAGIAABEAAAAAAAAAAAAAAAAAUBQAAHhsL3ZiYVByb2plY3Qu
YmluUEsBAi0AFAAGAAgAAAAhAP58GSyxAgAA4gYAABgAAAAAAAAAAAAAAAAAKzUAAHhsL3dvcmtz
aGVldHMvc2hlZXQxLnhtbFBLAQItABQABgAIAAAAIQCh5waOoQAAAL8AAAAUAAAAAAAAAAAAAAAA
ABI4AAB4bC9zaGFyZWRTdHJpbmdzLnhtbFBLAQItABQABgAIAAAAIQDqgNVDowEAAGQDAAANAAAA
AAAAAAAAAAAAAOU4AAB4bC9zdHlsZXMueG1sUEsBAi0AFAAGAAgAAAAhAMiBPKipAAAA+wAAABAA
AAAAAAAAAAAAAAAAszoAAHhsL2NhbGNDaGFpbi54bWxQSwECLQAUAAYACAAAACEAeUc8tkIBAABh
AgAAEQAAAAAAAAAAAAAAAACKOwAAZG9jUHJvcHMvY29yZS54bWxQSwECLQAUAAYACAAAACEAnDy7
WIsBAAA0AwAAEAAAAAAAAAAAAAAAAAADPgAAZG9jUHJvcHMvYXBwLnhtbFBLBQYAAAAADgAOAIkD
AADEQAAAAAA=

------=_NextPart_000_0047_01CABE39.0DDCD4F0--

0
helene
3/8/2010 1:59:15 AM
Hello,

I wrote a VBA program and inserted a:12 in columns 1,6,11,30,92 and 104.
The outputs are column numbers (1,6,...104)  and the columns for these 12.s:
A,F,K,AD,CN and CZ.
The output is unsophisticated.

best regards,

Gabor Sebo
worksheet encl.



"Gilgamesh" <gilgamesh@dont.spam.me> wrote in message

"Gilgamesh" <gilgamesh@dont.spam.me> wrote in message 
news:uthPqFzuKHA.4220@TK2MSFTNGP05.phx.gbl...
> Hi,
>    I have a range of cells A1:CZ1 all of which have different values.  I 
> need to find the column number for a cell that contains a certain value.
> I know I can use cells.find which returns the value rather than the cell 
> reference, and I have seen other posts in this group to return a number 
> when the cell is known range(ColAddress).cells(1,1).column
>
> I can easily put this in a simple loop but I was wondering if there was a 
> smarter way that could do it in one line using built-in functions.  If it 
> was a loop it would have to be processed many times for the different 
> values I need to lookup slowing things down quite a bit.
>
> Thanks
> 

0
helene
3/8/2010 1:04:04 PM
This is a multi-part message in MIME format.

------=_NextPart_000_0043_01CABEEC.7F178E90
Content-Type: text/plain;
	format=flowed;
	charset="iso-8859-1";
	reply-type=response
Content-Transfer-Encoding: 7bit

Hello,

I wrote a VBA program and inserted a:12 in columns 1,6,11,30,92 and 104.
The outputs are column numbers (1,6,...104)  and the columns for these 12.s:
A,F,K,AD,CN and CZ.
The output is unsophisticated.

best regards,

Gabor Sebo
worksheet encl.



------=_NextPart_000_0043_01CABEEC.7F178E90
Content-Type: application/vnd.ms-excel.sheet.macroEnabled.12;
	name="identical.xlsm"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
	filename="identical.xlsm"

UEsDBBQABgAIAAAAIQBPAJA+pAEAAFcGAAATANkBW0NvbnRlbnRfVHlwZXNdLnhtbCCi1QEooAAC
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAzFXLTsMwELwj8Q+Rr6h2AQkh1JQDjyMgAR+wtbeNqWNbXlPav2eT0gqkEB7lwCVR
HjszO7O2R+fL2hULTGSDL8WhHIoCvQ7G+lkpHh+uB6eioAzegAseS7FCEufj/b3RwyoiFVztqRRV
zvFMKdIV1kAyRPT8ZRpSDZkf00xF0HOYoToaDk+UDj6jz4PcYIjx6BKn8OxycbXk12slE+tFcbH+
r6EqBcTorIbMQtXCG1nTIEynVqNcTOAuhSfUWajx6Ja7SdZgcQcp30DNpWrpVGZpuL4eShb3BfrH
Ft6YTNDPNQuXLdhBg/I5IeWVQ9qZimJCMFQh5trJNeiGucO3hI5+1tpbMpIrW3OpspF6GPq96/fk
JaT5JIT5N1zheHGpkVtuWpc16BSuPEwccvRg/UZhV9ycEw9EJMUz8w2q/qyxGUqDZhAZElO2uHWn
i5tHremyVU2qvR3trOHjEGzx+zzo0HH8T3Tsvv5+54cGpy8qnp0/9mGL+0UeVEFCc58Tb65/vjG8
x+7TsV0bOiT8uRGb3aKp7lgRqj0Wxq8AAAD//wMAUEsDBBQABgAIAAAAIQC1VTAj9QAAAEwCAAAL
AM4BX3JlbHMvLnJlbHMgosoBKKAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAACMks9OwzAMxu9IvEPk++puSAihpbtMSLshVB7AJO4ftY2jJED3
9oQDgkpj29H2588/W97u5mlUHxxiL07DuihBsTNie9dqeK2fVg+gYiJnaRTHGo4cYVfd3mxfeKSU
m2LX+6iyi4saupT8I2I0HU8UC/HscqWRMFHKYWjRkxmoZdyU5T2Gvx5QLTzVwWoIB3sHqj76PPmy
tzRNb3gv5n1il06MQJ4TO8t25UNmC6nP26iaQstJgxXznNMRyfsiYwOeJtpcT/T/tjhxIkuJ0Ejg
8zzfinNA6+uBLp9oqfi9zjzip4ThTWT4YcHFD1RfAAAA//8DAFBLAwQUAAYACAAAACEAf8l62j8B
AADTBAAAGgAIAXhsL19yZWxzL3dvcmtib29rLnhtbC5yZWxzIKIEASigAAEAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAvJTRToMwFIbvTXwH0nspMJ3GrOxCY7I7o/MBunKgddCSnjrl7W3QlM0w
rog3Tc7f8P/fObRdrb+aOjqARWU0I2mckAi0MIXSFSNv26erOxKh47rgtdHASAdI1vnlxeoFau78
RyhVi5F30ciIdK69pxSFhIZjbFrQfqc0tuHOl7aiLRd7XgHNkmRJ7bEHyU88o03BiN0UPn/btT75
j3ejhDVoShcL01BTlkqMudLDjj9b8w7CeSNuK3CMDFq8U5rQ8eTFmeSRrn7iH434aEC7kebop7F7
lABHFEFC2u8sYj+rczC3c8IIXosHyX3rYSRBmoLI5oQI7Q8QQfqdSDYFk/4zTDoFs5wTBiW3ULw6
6y8hDtM5kadgbmaFcV3t73w4KNjXU/HXc8Y7/5LAkN6XtF/D/6AnT1H+DQAA//8DAFBLAwQUAAYA
CAAAACEA5XxecZ8BAADKAgAADwAAAHhsL3dvcmtib29rLnhtbIxSTY+bMBC9V+p/sHxnAQNJFIWs
SkjUPbSq2uzm7OIhWGtsZDslq6r/fQdosqnaQ0/z9ebx/IbV/blV5AdYJ43OaXwXUQK6MkLqY04f
97tgQYnzXAuujIacvoCj9+v371a9sc/fjXkmSKBdThvvu2UYuqqBlrs704HGSW1syz2W9hi6zgIX
rgHwrQpZFM3ClktNJ4al/R8OU9eygtJUpxa0n0gsKO5Rvmtk5+h6VUsFT9OLCO+6z7xF3WdFieLO
b4X0IHKaYml6+KNhT11xkmqYZtGMErQBpu2fxXy3nSVJGmziDyzYZlEZFGVSBtkuLdO4KDZsm/yi
4fpqyxd7s75vpDv89osSATU/Kb9Hoy460XmWMjYbGAZTnyT07o1sKMn5ILUwPYpb4JFeLtU8o6Qf
JwcpfINMC5YiYOp9BHlsPDbjDLeQPbyhH0+Bnxkj0aNP34bzxHjzIT6gFZjbpcTEPoh4YPgLzW7Q
mF/R7J/o5AaN+RWdjOpGcpRUcVUNFmIYRbBszvChFupPeJScfo03o5jw8huuXwEAAP//AwBQSwME
FAAGAAgAAAAhAOmmJbiCBgAAUxsAABMAAAB4bC90aGVtZS90aGVtZTEueG1s7FlPb9s2FL8P2Hcg
dG9tJ7YbB3WK2LGbrU0bxG6HHmmZllhTokDSSX0b2uOAAcO6YZcBu+0wbCvQArt0nyZbh60D+hX2
SEqyGMtL0gYb1tWHRCJ/fP/f4yN19dqDiKFDIiTlcdurXa56iMQ+H9M4aHt3hv1LGx6SCsdjzHhM
2t6cSO/a1vvvXcWbKiQRQbA+lpu47YVKJZuVivRhGMvLPCExzE24iLCCVxFUxgIfAd2IVdaq1WYl
wjT2UIwjIHt7MqE+QUNN0tvKiPcYvMZK6gGfiYEmTZwVBjue1jRCzmWXCXSIWdsDPmN+NCQPlIcY
lgom2l7V/LzK1tUK3kwXMbVibWFd3/zSdemC8XTN8BTBKGda69dbV3Zy+gbA1DKu1+t1e7WcngFg
3wdNrSxFmvX+Rq2T0SyA7OMy7W61Ua27+AL99SWZW51Op9FKZbFEDcg+1pfwG9VmfXvNwRuQxTeW
8PXOdrfbdPAGZPHNJXz/SqtZd/EGFDIaT5fQ2qH9fko9h0w42y2FbwB8o5rCFyiIhjy6NIsJj9Wq
WIvwfS76ANBAhhWNkZonZIJ9iOIujkaCYs0AbxJcmLFDvlwa0ryQ9AVNVNv7MMGQEQt6r55//+r5
U/Tq+ZPjh8+OH/50/OjR8cMfLS1n4S6Og+LCl99+9ufXH6M/nn7z8vEX5XhZxP/6wye//Px5ORAy
aCHRiy+f/PbsyYuvPv39u8cl8G2BR0X4kEZEolvkCB3wCHQzhnElJyNxvhXDEFNnBQ6Bdgnpngod
4K05ZmW4DnGNd1dA8SgDXp/dd2QdhGKmaAnnG2HkAPc4Zx0uSg1wQ/MqWHg4i4Ny5mJWxB1gfFjG
u4tjx7W9WQJVMwtKx/bdkDhi7jMcKxyQmCik5/iUkBLt7lHq2HWP+oJLPlHoHkUdTEtNMqQjJ5AW
i3ZpBH6Zl+kMrnZss3cXdTgr03qHHLpISAjMSoQfEuaY8TqeKRyVkRziiBUNfhOrsEzIwVz4RVxP
KvB0QBhHvTGRsmzNbQH6Fpx+A0O9KnX7HptHLlIoOi2jeRNzXkTu8Gk3xFFShh3QOCxiP5BTCFGM
9rkqg+9xN0P0O/gBxyvdfZcSx92nF4I7NHBEWgSInpkJ7Uso1E79jWj8d8WYUajGNgbeFeO2tw1b
U1lK7J4owatw/8HCu4Nn8T6BWF/eeN7V3Xd113vr6+6qXD5rtV0UWKi9unmwfbHpkqOVTfKEMjZQ
c0ZuStMnS9gsxn0Y1OvMAZHkh6YkhMe0uDu4QGCzBgmuPqIqHIQ4gR675mkigUxJBxIlXMLZzgyX
0tZ46NOVPRk29JnB1gOJ1R4f2+F1PZwdDXIyZssJzPkzY7SuCZyV2fqVlCio/TrMalqoM3OrGdFM
qXO45SqDD5dVg8HcmtCFIOhdwMpNOKJr1nA2wYyMtd3tBpy5xXjhIl0kQzwmqY+03ss+qhknZbFi
LgMgdkp8pM95p1itwK2lyb4Bt7M4qciuvoJd5r038VIWwQsv6bw9kY4sLiYni9FR22s11hoe8nHS
9iZwrIXHKAGvS934YRbA3ZCvhA37U5PZZPnCm61MMTcJanBTYe2+pLBTBxIh1Q6WoQ0NM5WGAIs1
Jyv/WgPMelEK2Eh/DSnWNyAY/jUpwI6ua8lkQnxVdHZhRNvOvqallM8UEYNwfIRGbCYOMLhfhyro
M6YSbidMRdAvcJWmrW2m3OKcJl3xAsvg7DhmSYjTcqtTNMtkCzd5nMtg3grigW6lshvlzq+KSfkL
UqUYxv8zVfR+AtcF62PtAR9ucgVGOl/bHhcq5FCFkpD6fQGNg6kdEC1wHQvTEFRwn2z+C3Ko/9uc
szRMWsOpTx3QAAkK+5EKBSH7UJZM9J1CrJbuXZYkSwmZiCqIKxMr9ogcEjbUNbCp93YPhRDqppqk
ZcDgTsaf+55m0CjQTU4x35waku+9Ngf+6c7HJjMo5dZh09Bk9s9FLNlV7XqzPNt7i4roiUWbVc+y
ApgVtoJWmvavKcI5t1pbsZY0XmtkwoEXlzWGwbwhSuDSB+k/sP9R4TP7cUJvqEN+ALUVwbcGTQzC
BqL6km08kC6QdnAEjZMdtMGkSVnTpq2Ttlq2WV9wp5vzPWFsLdlZ/H1OY+fNmcvOycWLNHZqYcfW
dmylqcGzJ1MUhibZQcY4xnzVKn544qP74OgduOKfMSVNMMFnJYGh9RyYPIDktxzN0q2/AAAA//8D
AFBLAwQUAAYACAAAACEAwfparSYBAADWAQAAGAAAAHhsL3dvcmtzaGVldHMvc2hlZXQyLnhtbIxR
y07DMBC8I/EP1t6J06JQVCWpkKoKDiDE6+4m68Rq7I3sLYW/x07VCokLt33N7Mxuufqyg/hEHwy5
CmZZDgJdQ61xXQXvb5urWxCBlWvVQA4r+MYAq/ryojyQ34UekUVkcKGCnnlcShmaHq0KGY3oYkeT
t4pj6jsZRo+qnUB2kPM8v5FWGQdHhqX/DwdpbRpcU7O36PhI4nFQHPWH3owB6nLa8OxFtIFPykbV
r0noHGRdtibiklnhUVdwN0vFCfBh8BB+xSI53BLtUuOhrSBPo/LP7GZyGNe1qNV+4Bc63KPpeo7n
LLJFcV6wVqwiw6g6fFS+My6IAXUcy7MFCH+ETDHTOFULEFtiJnvK+ng/jHfKs2sQmohPSVJ2/kj9
AwAA//8DAFBLAwQUAAYACAAAACEAfDIUqyYBAADWAQAAGAAAAHhsL3dvcmtzaGVldHMvc2hlZXQz
LnhtbIxRy07DMBC8I/EP1t6JU6pQVCWpkKoKDiDE6+4m68Rq7I3sLYW/x07VCokLt33N7Mxuufqy
g/hEHwy5CmZZDgJdQ61xXQXvb5urWxCBlWvVQA4r+MYAq/ryojyQ34UekUVkcKGCnnlcShmaHq0K
GY3oYkeTt4pj6jsZRo+qnUB2kNd5fiOtMg6ODEv/Hw7S2jS4pmZv0fGRxOOgOOoPvRkD1OW04dmL
aAOflI2qX5PQOci6bE3EJbPCo67gbpaKE+DD4CH8ikVyuCXapcZDW0GeRuWf2c3kMK5rUav9wC90
uEfT9RzPWWSL4rxgrVhFhlF1+Kh8Z1wQA+o4lmcLEP4ImWKmcaoWILbETPaU9fF+GO+UZ3MQmohP
SVJ2/kj9AwAA//8DAFBLAwQUAAYACAAAACEAjbVXoawgAAAAYgAAEQAAAHhsL3ZiYVByb2plY3Qu
Ymlu7HwNfBzFlWd1z0gejSR7LH9Ilgy0JX/ItiTmS7JkEBlpJFkykiUsx1aIgjWSRmisz4zGtgwG
j23ASpYk5iNg2Oye4ZI9J5DEkMQhubAxbEhMSILZcMGQ5HAuzv2UvdwG9hc47YJn7v+qqkc9o7E+
DBu4vZT0n6p+9eq9V6+qq7qruvvsiwvPP/JE7m9YQriOmVgkmsZSDXQFaQIPNsZUJAiRaDTKafhB
8i/h/yEPXISt1MYrADOQAswDsoF0IA2wAtTGGYgzgRxgAWADFgJZwCJgMbAEWApYgCuBZUAukAcs
B64ArgLWAhqQD5DsAsQrgVXAamANUAisAyh/PeIioBgoAa4GiP6X8N48sJUN4S+Etqhlg4iDbB88
O/uwFD1Gt4D6wHTBc/uDWt3TP1ZMYApvEJzbWTWrmq7QDHkWjEi6fuq/ycIb332A69X1G3m2sV4W
YCNsB7wQZH2sk/ujz8gybTqXqQrpnw8uiqdlNmR+Vhq7k+1krWwra0HsNOTPNmmDfjoHSTeF2ZSj
dnIrgpMiGsOpTcgkOv9pPKAxgM5h/fynsUA//6muCwAbQLrp/KdzcTFi/fyn8YNodP5TbDz/aVy4
CtCAFQCNAQXASiDx/KdxgsaAZOe/HXQHQH5zAaSnVMbUvcqBCmAjcA1wLVAJXAd8BPAAVUA14AVq
gFqgDtgE1AMkczPi64FGebxFxi2IbwC2Aq3ANuCjwHZgB9AGfAy4Efg40A58ArgJ2Al0AD6AdHQh
7gb88vhmGQcQ7wL6gH5gABgEhoBh4JNAEBgBQsBuYA+wFxgF9gG3ALcC+4HbgNuBA0AYUJYqaG8F
lTcxdgEEmwqBSIeBlwEKyGYH8n81Qd2sAAdjOD6FtEIZsW4fjV6LNFSf+961ezvzq574k9u95fuL
frHMApEIp/kv965IyV8S0p3++s/v/FxV9eee+9Herxbt22kDjZSnAPMAeIgHRbHII6qcJbFYompx
PjTV6gJQhptIv8L412PHuooPKi6EbSprbST95PJWWyx1v0gxVpYvUrr1CtvC7GhbO/9z4rccZ0QF
ZklBscelvJI6matzUexmZegdurMV5QTZE6a+GY3a4CVuH8Y68iEFnoEfSl8BrJK0ehnbEauHRXkL
uHtxrJeaTOnlM3j5Q8cXqySXSh0Dk4pylL4UP/GWUyYPvDfyFNH1QAQ9bYwT6cMgeIgog4ePh4z9
yfQnk7HcZJrmHtJ++NsrmlKYshIDVTsGgx75t443hxuntRON0sk24GTvYa8LK0mKW1d1mXHkxySL
JMWfFkRBDzp5klWFQsFA5+4Q82vbq3du8Q0gUanlb+vFlLdjKNjXOTRk68vPtFrvrvaNKOrd9lvt
drvT3lLuqChmNrvJ4p3HFqtZykq73V1228HM/Zv6hzp9/cpZW+uwr0u5t87Xbx7xZ3R7g35fyOLr
7F9yVUvQ333U39XvY6kN3ewJy7bg7szq2tHhITAuXr7NPzDcz3whf40/GNhjUrPurd49EhoaCKTe
Yq4xOefuiOBHw7IQxXr6SqTTAAoiNqEx4oPChzWFvURjDMK/ynhFqjgmL35Z0iyYm6i1GmSej7Mo
7JMGXuKnkLy3ibwP7pext1mHGPZF9eSv8frDFZczuwMbrj8sYLUCovYzl8sBS7Vka8X1lx9/IT6T
z1w2kWM+9C8AUfdsYn6y4/kg5i8VOcb6X875SPXXdc+2/rlQvV/2HKP+0mTGzkCDfn69Rr18tvqp
nnR9QSH5+WNDjjhvaAQWgbg9gJkSCLgKOSBS7+U3uf6p528KOy7V0Hmbh3QadTuEChk3yBP+O/L4
Hhn/RsZpMn+tjA/K+B7qughPyBb5jjx+VcZvytiRLviWyfgRGT8v47QMkd8g44My/o6MV2SKfJ+M
H5HxSzJ+U8b6uPSqtEehKRlhrYypNXRbLbgGp9a8QeYd5JwK22fglc13iXGpytOo0h0UFexD/BSm
FIpPIqaSJxCfR95y1jRyc/XQqJYfwjDvL9y1Nl9brelpKv3+85H+DnS3x3HnsYbdpZ6Hjkk7BvZ1
DfXvHhgkO/T0GhZWhd1hlCP+jSyWiZmvani4P9DlCwWGBkuafKGu3sKBfXt8/bv9RdpW3+DN/sJ8
n2Nj1y2O/LVFmn0t6X8Dck6hzzchPI6et5L1wF8LYZNqSJsMabMhnWJIp8bSwufCTg9mGNKD+fr+
Jy81X7f2+j3+kIMm6vFqs29EDfGJ+rTTXu60FzPNbJnvxTy9XMzT6m36PL1C+YE+T1v69XnaRo3G
52mtW5+nF7LH9HnaMqTP06xfztOpe9SVcp7OCPB5unV3p8Z6AoPdhWszrbaawICmthY6HKo9PE84
VFFudDgzrWu0gbBspnAL073PdPebewvNS7nrme57j3C+smpNrMMtvHMF2viuNZnW4N2lXWzdQWer
PxROP3xoRdhCFzEjB3/ZNlKYf8jECkvM9iqbY6P3xvC8TOuAEl5sz7TWDQU1NcBSHNq2Ic2h2d2Z
Vp/H5PWz/v6RQkeRFrCsLdl+0JVpzbTmNPRoz6QevGJbr79+MNN655pApbI6oPzD4gFtvebItC47
XDOwFktdqbWD3Uxr6Mm0bvGP/iGknTbVzm9i7Jn55pbta09vOKw6j6iuI6r7W0fU0iNqmecTJucu
T968ec7T602Ldq3VrtMy7JqpuCHlWs25IfOOlD4lEF7g7Q0W7i9zn7bfOZ9l1643BSt/omkHi9SM
TGtt2XPKfYcaxq5wlv3jFaWuO1L2/nD0uYwj3l3hKz+1qm5J8bOaZ8l6rczNLD9ccMRr/fHqF4o1
TasqLLlQ6szK3lB+VXZO9nHrj67KTr1+5c2aVn1VNrvzs4Vq5erF6ysd9tKPZP+xPPu09SPZV2d7
N2Y/s2uAXdHZvesR1bfZ8xk0L84ijzkS1XA/No6L8Qz0Vw20s5zeqZ7BCHFO0kHiqwIes5tfx5+Z
Qo9Ez+MMfcogx4YyE0QD6D6B5JO+Fpx5JyLRq3R9FB+HDVSehnQPwVzD9Rwz6Cnk9Ei0HLxjCXpI
7hjoowY6ybLhLKSQx85AK2mKRkdxTPwUeg38xEe0esih/JOI2wz5HuT30ugDO21M2E98Z8BXb+Aj
OUQ/D3q5gZ4j6RbIKDTQiZ/02sBP8QRiKq+BL8fAZ5PlicdioFM9PeY9ahvsmsCyL9VSSCLO2QaF
HWXZaHG6DjgBzW/ACqay9EIPBL77dks0lrRH2XUbc6BilbkwutETVZAoiqZg2DSxzHMobimKZnbj
Dt9SGI08PB6hVQjzRCSyZa2ZFUULhSAGmecibEmhBeXNZyKFObiPjPSeiGQprBQ6SeiZyMX7MjyQ
vSLzLK5DITby6HiETMTFS9VYJB0yjkVyi6KloGaaj0XM9ug7ruUpCita0xZZMxpZMxZ5i9hh5DxS
8s4fxyNWC5azyyzo8WOR0UhbhGWZz0W4wnfuH49woxaAFcR3883d0XdPkhNAiNx+IrIHt4RrLJE1
OZE1hTHJmewtchvxPkAK3kIz6EfQT26UeaORt+BY/agt8hZ1TplXH3mLLgvkUbk0MytmZn2kPFIY
yYlYYj6buCh9du7iH0ws2zxxURj8ACqD5ah3QsuvVhPIeSDfvLxYZWvB40Gj6EV41fPNYxHrfJyC
iN99+8xF8upURy6EIy8mdaQKT8WbkcvN+H4iuZSb8bTKnJMWwKBc9s4XxqkjeNg798OEfPOotGdU
2DOWzJ6sOdjj5vY0J3prC7enyZRgj/uy7Fk6B3tIcWj564n2BLg9v060Z8tl2ZM9rT3paIHI7ecu
fgVdeBH6H3og+6byhinMR2Im7617QVf4DhGN8CpGb5WNX1TZOeAM0hOIJxB3R1OwTtqAfiCCwu61
2GSaoiGZpgvnc+C3R1EeZY8h3YJ0Oc8Xl91FUUz7wDjyxoBRoA2oB8qBQiAHsAC4KObGt8k7lyJ2
VE1+/2GDBnF7YOZjLY2OpNQD0PWdWDuks9TUgZOIz0FiBAWJB7qDQRic6SZpDuuvp96h4Xrm9Vfn
Y7/+q47PNHnuHPnh23X/tLVPm279NaY/A/W9AIsLMRL9HW55vgncIdoajYpq5K/63ez0vz3x2/E3
/mdX9Td2fKXmbNdE27T6IZmkP3iX9nzBitc8x79q/Vzr5htTbaDBEMwO067/JhZLVC1abTbrv22x
dp7tTPh+83ngB5V9fFbrv9hTja0J58oSoE2mLGQdfGekTeYmS9mmLTG9vFnmqte2w8tklXptRyzV
HUv1xlL9sdRwLBWKpUZjqf2xlLB+unVxWh2fXPk2pma7Lt6CHqkobeiTl7sufhx1J0vnvi6eM6d1
8YyFGucX45PQqbcv+X8COHOR7vNFaMdQ7OV7YPfz846ox0Cj+KSMzyA+DpRj2CM6hTGZR+kJ0C3w
EKUpHEN/FqmpvxPIG5ZlT07DRyWfMuiYKklQzkPGWfB5zHfxereALK5vhQ10nVxI+ZKuof5U0mNe
zfntBv5UnhON2tWb1EY1qJIc4qeZgOTYIKcI/GmSLuTgQhuhEEike8CfA7ouJwe2kpxe+IpOHJ1u
gw6PuUQ9CT9OyOt2kOT91F/uv3Q/kU/gtv8g91+T7TuKdh+X92WabPejoLUAi3BM9ad+Q+Hcxcn7
YhvyjoOHyhOfBSAeOvYgzcMdPbyfd4Pehn5HoR97xpe68qLydCFA8XnIoXic5Jlv4XLOxO4fhSzK
tyNJ+inQsQ3xiSR8ZJ8HoEB8ZDvF9RhX9bVPkYt6SR7KJxrFFC5Fp7xh8HkAPeAGhic71HZuO/HE
BwsT15TT7ONtwDLr5D5eOetiShYT230OxAV4/sCFLb4EogNTTncyooMpNlnczos7IH8OheN1T6cm
ntPJ6G8OiubHWdnzARV9HUMmArWam6cu/4f2TL0s/6AFuya4KyBBYQubj8hGSkC34Lm3MHWZcBrv
R0/JdD5IY5SWPDlIUno1nifRZJrKWqScLDwL0yLpS1kpG6c0ZFKgmlDZDNwtHSUC0ll4vu24TM/H
kSblzMezNnaZpnvnUcljha5emd7ODotr5QT5ZEN9zJ5s1mFIvyHTuXgWbyyWLmInZZp0hQ3pUUpP
kZ/NLCro3P5splEaPOQrJn2loce1SboGcrnkz0V9j8o06Tph1CX5SYzuqyw8k/iU5Kf0WcmTD55C
gy66BiEbNETjkp900XhGdpKuekOaruqS1atN8pCuYclDuloMuk5Iugb6mOQnXWdkmnSNG9JvSH6w
i3oZ/fnnTMMP1H/OJbSpmfvHxK85yO+K0oFRmVLU6x4wHyfDcX+OlUXEYl9mtfq/sUOSyqpo3d1B
qZFeP3YrVjI7dkpWsXX4LWElqpPLsaNcFG3jViMorwC97F7s//YDOv0MhtfdeNKJrk814kfIkfEw
Yo3VqBpbraawL/Bx9xS8HKgkmQuZ2Fuhp2DcvFxYljsu43MyPivjCRmL+ijcspXsJlVlK1iHugaa
hH7iexxYwzrVT7CfIT3I/sV8kvoCynSqVJd0nruXyyDaer5XJMofBR/Vb09cvcXsT1Sxr0QarKiV
mbdAH47ILoopPM48XILgTcc6RBC+XcNuUdnNvk5/v853iqUxsTdWqWkocUvMLxCSw/aTP8eR1O05
Q8IRiA5XGnQ8jhXxNNiz33zmD1kWo5253M4vsBMn9puN9FLO/zie+bXy/bdlsW2cPtqtw7YE7dfx
dJyeXIyFVD9jrfT6kF3HFWHfcdh3CrJF/SCuylg/2suc5DPa5eb2Cm8Z6Vu4vVhmho7zKDtbe91J
7I2zq9pol3iKifrzMOynuBdxvB3U7uIqx0gPSPvIB3Oxb8tM9nmFfZPPXzhR+7kHev4CQ0RsxJiN
hDIw3cXPHHoOcvL5V6LPNdgu4/mLBii5IBUZ9W+Yq3Lwk36sK/JVT2qj2YjAVmGS519csyk6hYf8
T3r1MIUhCaEZNN3/SNIpc9PzLxY8uu6F+jv+OfxueOsTS22g0VxFTUvV08XHP2hmSSyWuPQo/DGb
9TddwQcXF6Ka78fzl+99nYl88EE9f5nL75HoLvMY98cH//xl+zT3bTM+f1kRd9/2533+8sTJ6Z/n
cH54nudAU19mSL5/ciWkiTsdPcYgQuOMIej3+m9KRj6MIn+ZfN6KzoL37zknkjaXwHBf1jHT5g2s
TV5/G3JEtfTVRDESekCXE9/MW0PgnTnE9m9qMFzTpGbDhUUQ6TDwMkCBPH8g/6Gv0Tg+8/7Rb1u+
sfQnD39s86F//tqKJ0tP3DCb/ZvtFeElC0eKqx+y3Pj7idBXnrdBIymfYf5ILJao+i/zx+XsU1A/
/6Dmj+UfivmDOry+7vee5o+NH+L5w/X/0/yRJtbA0K560OePKjlf6PNH4D/U/GGJXXpTvT3A+zt/
GO9/yknFHMPl3H91Qkey+6+KOeomdujHnS5duYubFKLNFHrAUC2ZduJtPXoDdSfWareyZrYZbwB6
+Zt8M0kR+Xj/M9ZCNO7OplQvmJ6lJWeEbrx9GhTJy/ql9UzSq4fZCPkimErIYQg/8Y3R9UE0Dd2K
cME8eZmGJ+4gvVChfY5NcW+ZueGluvewm16AYbUEmyMFeFetAP7eCA0t8MMQ3ksI4jWpAaZBfoCv
Co4gXYhV73K8n7YWfF5wDeBvCFdQRq521oQSXVzKCHJ78E6JhvcyeyEviNXFbpQVba3HZZJSC8kl
ePuzEX8F4KH3gXejVD/KVyMe4XJJF70jrKG3DOOvn1N90BLgtowIh8rf5Um8RquSrvfkNQfsLION
5Lm5eS2Zb5r5i2rkMz88YTxyYM2+HW3cBi218EoJT9dCazI5tWgdkkH+opLUshrkdeLNVT9yqB0a
4aVO3raJb5h/j28xJfYvF2QYr33oDUX6K4ZFekqnGWPxFmOBtMLoqR2wYBC9YAjvxo6gdq14N5be
+24GytAf23EU4vm0Fk21CKFGnahzM6yv5e2+GzTqfZOtbmx0d6zNnehNdeixNbDVDYuLsf9TDUoV
UrRb58BRMVADuaVIUQ2q8EexG3+C7sT7mKImbsRzb/PZnCkHUYFDwGHgDuBO4C7gCICRgX0K+DTw
V8DdwGeAzwKfA44C9wD3AvcB9wOfBx4AHgSOAQ8BDwN/DXwB+Bvgb4H/BBwHHgEeBf4zQKsOX0L8
d8B/AU4AXwa+AjwG0Oo48eA+hn0dOAk8ATwJfAP4JvAt4BTwbeAp4DvAd4H/CnwPeBr4e+D7wGng
GeBZ4B+AHwDPAT8EfgScAZ4Hfgy8APwE+CnwM+BFgGx5CfE/yvTLMv4F4leAc8CrwGvAL4FfAb8G
qNyHJVxqpGxGb63DM5p0/ovRoAlnTDPOCn2cTDYSGMeQyxkLaL4Rf2ZmVvElAlXh+4tWxDa5ew8H
8iB262fjR7oyMPF5cvJbEXo5RRdniA/km7FNcqkvQyzGmViOc3TycQBaVopGl6iXLhON0svzPKBW
7DUTmZTBJyf95UcSO/UpA3xAQY3ni0ZX/U5IyiFRn16UKMqJB9ftmFenWpgXJ4r24+iRUgr25Fa5
uKip90DR6BVxolwQRasLFOonRZGPFYV2OnRv/3vHaOQ/m65/77okk09Nnoz+56ZRf9F1UoPr6UvF
5gc2/NuL9/+h8dsP1v3rk482PEh8dOZ996XHlv/Ni42bHzl27dV4p+2jOn1DQ0Vk1U1LPd996fPa
l454gzr96w+fXfLKXzfWPd5XtOSFV9r+qNMpzoG8MIBveChbaW+zhNLpTAnbGE5/zOT4+IcpvJgf
4JU1xjxMlYfdQ/T1D7M88uNdOYaxLnY8GgjR1z30wnijjDau9MINPYx9MZY54gfv12OHeFOOJihd
FN4sG6TJSi+7DYqfjuXu9Q92p2TUjnb5+8PrbcyUsb266v/8DxtLMe8IDDrKnrldJl3OeQeQbW7y
dX3jSRszm8FX9tUCG7OYW4JDu/xdIYc128ZSM0ZC3UP9/vs6bMxKsmTm33+f8pp7egJd/iW7bSwj
Ax8E0L8H0Lf/tzaWFkabmhS2s5bejsRrgDmvUhG8h4iN/fHcWNr5+8m065+QtpjlZwX6+nJg2B24
fYUYelNw8A2I5bn88YBnIrCJa4lGd1bv3OML7oSrnr4X1WLB0q5vvjAlG9TnxuAAaRp/X/O1jCls
eDfwwFEbm8cG9nGW3xTrLArjbwtSHUa+NwFb9UrW+Ht8u/tDu5614U4o0GHTs2KWBdIe1YXEaOgE
uxqpQDCAAsJhscyGnpZ/wZ1pOMw7W7HjyMeIs+vGqaK7TBCtMF/b1CyfgiwzCzq6Al9+0sbS471F
5F9QI8sN9ge32tj8eBbpAb+DO9XRpcGpXJ7rvqTyXKchT/dvw2C3f/RN9BTRSgqr6goF9vi9/v7+
p7+tW6MwuGFgd79vq8PraEWLL2MDlwonqfdKl5OUkdzPTBK200u4F64nVwx0T3XFQCZckSJ7E3/p
+OCb6Lfx1d1GLyYPfovanrNUuG5AA4lWjrVMpwpJZtbV6wuuPaZXI5ZL5M9fJHfhbczrYbCVyc6J
4/ZryLxdvqnm7bKSeYw/1bD3F1MM4/Tuh6fYEsxCMQs6qniYob9ftwfOnnxR+UvrJt3E31n+5VbR
vfmLy/8LhaY0O88ZGraxBfEe0jW95UXnpLm5n+HbLaoJ7zPTCBofsLEMqqrOPLrPBxOe9+TXZ1mQ
RtdCDM/UCXnLIGc+ywOPDdqyAIV/WQmJuEDzQXy4PEq8jJmOlHVPhmmdg6yyr1PVo2lseHFqvYkd
wntKF8xm9IDlTB86x7pCKbiuYh518a5U1VqpWuepQWWxJSU1K03N4hek97MMdfO1qnUpU4JhMfxe
py6L3VqG6d4yE2sSq9SbmGld+yZ8cCWML664XfZiZrnCbPYyqzpfycL3VljZbQXOEnsB7vu8G9sx
AeDWde9Ie+u+kR1a844yd7vJ78Q9an9nQXNjLRYlduMzKnizffnQIOtgyuFajO81ga47anFNHmaB
l1nXodovhhc+HFYO1jJnTV15jd2NG9PS6rqqYoc97Kgurq6pLQ3XvlxVFfa6wynOsdrwMXZz0Deg
1QVg9YhWOFpetjbc7h0aGBgaNKWx9qZAV3BoZIj1hLRWnDhYYmlvrqtr8OKOwdne1NpcUnOssbHg
iO1wi+YIhyxac+fBH2iNgc6TQV9wH75cpCw49AqeqFx0yHQgf9mhx5g+C4XxWZq+TSwnvOjQtvDX
aDVmR/jUcf51ttPK0GllXe7P0p2vpS8/jc5kra9WHM/uoyvqpVdW41mUomdX/Goif0m1ZX21suzZ
2zBltWDO2vRsXqunwF91+mP0oZHc+nnO+7bMezHv04tezFv1u5fz1jl/mud8Po9+2Zd/u+HUOy/n
uX6a53o+bzNFF/Ie+trzeTal+qNTe9N916/Dw5M2ZIi1PwWXoHpK5yaaCNSjRa8mmp4Sq5eUQ/c+
FCgHNeIpNZZKwRij/9HOIzGHwaPDzNjtKQBKx0GnQSLPp2NKt2BX0Lj+a4esuQYMJLjGEtbS+T6b
8l8F070WwWnU75hN4QQe0m8ctxKykx6eBfVvZU78qu9erO3MLSy+DP0/h4repPrnppu4UX+FegtO
Be4Hos0U/hsY0vQuifQSOuaFcLfNY8Z+L+OU1+8ynz358813Pxqtq7jQd1zhq8RipViw0Hsx0aiZ
Hf60X0pR2T2pIo9yxJmRRkYiTHKZ47gU9tA8wUElHFO4U+O4hcyGKVyWJFw+yWVmywx1FrrEr0Oc
akYST6/ACZUs3IATKFmAIq4B4lTyo34tTsdWHOvTSFcIgnEDjXsKw3U3iqrkNnGRHXfkjDtyobTp
j7Q8gnCa/7I6SFOvRhpTRcvW5k1bq253tnubm5qat9zuaG9q8G5tbkUCFhDK8FNbVlLT2EgmU+1B
hIXWfdJXokVFr3hE0vQe0yE0yl+yZZEl3pYFELoR+WRLcEifQvQZRJ82MGuIW5B2EWHOqG3z1jaW
1LbVUn3JyfxWiAz7pNDAuxp9sJDCQ5K2TDbfMKfqP2SYPcFJaBT1KjDI+VSfTvlsKuZqZwkmVFT4
AFlAagSZTPiUVEO+kZrZE5JG5wOFMP/Vf8iExrMTxf/28Tzb07/DMmbNf9+aBbm1YLiEb8TkSjOu
f8TgKD696rOrPrk2NupGCgfyBpSGCCPFwSOSViG77VHdPh6Tka8lNCDREj+lSLTELzkSLfETjETL
qhEOOi001cFL/ITQ7w1xnJmBbTuPyMcvlTqXxIrEF3qJL/F5FKIlvghMtIVJrKBhLnYXSO4DI789
hW/S6Yz04fJgI1Y9b0SMvAM6vcpA12kjGMX15TtSmJWkAq9OpaXgaXU5zN4jY3m+mV5J4IajFDQr
diZ92Lu4GdpASSebA1jMgP2puqSzoFHQXa2f4Jl4ftMnBnd+8rSq6ew85xROT3xik+qR+FQn0RKf
zCFa4tM7oKVThYLwVRegW78d1vdjR81PFqcDONZ5m7CjRH96Tic9SRtncQcs7pBjkF6qE7XX8Icp
Iz0L8rqwK0MaBuClyZzFCTlUAhfKNHyk25AXgh2dKOfH/uIu7C3q9L6YNFEC/SK9MAk/5a4GEuWQ
Vcl1V3OLk+d5cW1n7INd+G7rpA+bYGsI9eyNWTmA/Stjva9Bb4WRcwzi+bUwSulQ5NXjrVIe9T/Z
gXgPor5KAWRJN8k4RcbzZJxGPSBNn131byeKLq/E5d0g5/4cEsoUtMls62KcQS+5ZK9PqnEL7pLo
NBCdUM6nX5eB6OI2XeqnoaYy/1bHhgq7t6Kuuri8psZZ7HZVVBRXlbpqi6vc7lpvqd25oXxDxW14
WqdmqGv3gH8wVGm0+urV9fjoJg8GDnEVME2ec5o8V1wePvvpr8yfvPiAIfX+/mHv0GDIPxqiCthB
2u4PjuC7XJiAhnEXiZUUl7My31XhcjqdsA0M3qZNlflVFVXV7vLycrfXCKpaS3Vlfqmz1F7tqigv
ramoEEDOJm9lfl11XYWjaoPL69zgJrhqkJFp/Xj90EhIqx0NYd3TH9QaBnuGPpFpjfnDUXmrq9zl
rClz24u9dRX2YofDW1dcXut2FdvtVfC4w2G3l1bddg0Gu2tipfDJL0jmg/ywr8sPgUZvV9qLtNi/
N9Mq/FzpLivSSp1FmsNegVSZy1Wk3SgznUmLuBKpl+ogH3L6/xUAAAD//wMAUEsDBBQABgAIAAAA
IQD+fBkssQIAAOIGAAAYAAAAeGwvd29ya3NoZWV0cy9zaGVldDEueG1slFVtb9owEP4+af/BsvqB
Sh15KRSKklQQoNB11bS+TOo3kzjEahJnsQvdv9/ZDqxh6bZ+Aefx3XN3j+9s7+Ilz9CGVoLxwsdO
18aIFhGPWbH28f3d/NMQIyFJEZOMF9THP6nAF8HHD96WV08ipVQiYCiEj1Mpy5FliSilORFdXtIC
dhJe5UTCZ7W2RFlREmunPLNc2z6zcsIKbBhG1f9w8CRhEZ3y6DmnhTQkFc2IhPxFykqBA09H+Foh
KIPekByyvlWJOtgKvJiBnyoWVTTx8dgZhY9DtaGdHhjdildrJMnqlmY0kjQGdTBSVa84f1KGS4Bs
FU4bKEoSSbahIc0yH4fnINwPHQSWEMDaR3i93kWba50g6Zgm5DmT3/h2Qdk6lRC23x30FUPEMzCH
X5QzdVgY5eTFpMVimSpLjFZUyDlTbhhFz0Ly/Hu9WVMY517tDP/ber/X/ae7ZVLQlUyJJIFX8S2C
g4NgoiSqDZyRY/dAlUjBYwdWm8BxPWsDVUc1PDHwARoa9LRpOzVor9+EZwY+GzThuYEPA14auH/W
tF4YeHjehJc1PGzCVwY+DPnZwIchx3Xih3h4024fPv6BWyDuXmG3XeEJ4HDYQlagdKKXKalojE1/
T9zRpfJkulWX887E8R/G1/ezztH4qH98MnFOMD72rASOSfXo7oTCN2kNFdg27KfvtJ+9014V0V5m
ez6LN+31RKpt5QiSgyaLpiYYmqhdleXfWZfu6KomdjXxskmsJG8nVm5vl+eqyd3J3WgKmN7WsQNc
0enhs/dd3HCFWW917R9ObMNLvQYtcx4C/jv/4Ho2v+uEgxOn2VmGydyD5vYoyZp+IdWaFQJlNAEK
uzuA1jUXn15LXmpU3U1cwnW2+0rhLaFwx9jdU4wSzuXuQ/Xx/nUKfgEAAP//AwBQSwMEFAAGAAgA
AAAhAKHnBo6hAAAAvwAAABQAAAB4bC9zaGFyZWRTdHJpbmdzLnhtbDSOTQ7CIBBG9ybegczeUl0Y
Y4AuTDyBHgDLaEnKUJnB6O3FhcuXl+/HDO80qxcWjpksbLseFNKYQ6SHhevlvDmAYvEU/JwJLXyQ
YXDrlWEW1bLEFiaR5ag1jxMmz11ekJq555K8NCwPzUtBH3hClDTrXd/vdfKRQI25krRdUJXis+Lp
z85wdEYc1XTDohh9afXBaHFG/5RuB9wXAAD//wMAUEsDBBQABgAIAAAAIQDqgNVDowEAAGQDAAAN
AAAAeGwvc3R5bGVzLnhtbKRTwW7bMAy9D+g/CLqvSgKs2AbbPQwIUKAdCjQDdpUt2RFAUYZEB/G+
vpTtOsmph12sR4p8fCTl4vHsQZxsTC5gKbf3GyksNsE47Er557D/+l2KRBqNhoC2lKNN8rG6+1Ik
GsG+Ha0lwRSYSnkk6n8qlZqj9Trdh94i37Qhek1sxk6lPlptUk7yoHabzYPy2qGsijYgJdGEAYlV
LI6qSP/ESQN7dlJVRRMgREFMz0K22YPa2znilwZXR5edrfYOxtk95U2KljjvMMQcpXLJ5Uic5ABW
AbssgB1V0WsiG3HPhljwYey5PPI0Zpop7pPoLupxu/t2laCmglVRh2h4+tetz66qANsSC42uO+aT
Qs/fOhAFz8A43QXUwFB9ZCyA22kswFve0N/2hvvcChz83tOTKSXvOg/hA3IjC5z5ZiPzX7PN3P9N
K87tLT8zXsm+Eb2WF3nfpfydnxTIlULUgwNyeEs4tc+c5nwZwSZvgHTNLzcPZ63CkzC21QPQYb0s
5QW/WOMG/2ONenWnQBNFKS/4OW9q+zBtOa2/R/UOAAD//wMAUEsDBBQABgAIAAAAIQDIgTyoqQAA
APsAAAAQAAAAeGwvY2FsY0NoYWluLnhtbETOTQrCMBAF4L3gHcLsNbULKdK0YP1f6wFCOraBZFKS
IHp7g0iz++bNMLy6fVvDXuiDdiRgsy6AISnXaxoEPO6nVQUsREm9NI5QwAcDtM1yUStpVDdKTSx9
oCBgjHHacR7UiFaGtZuQ0ubpvJUxjX7gYfIo+zAiRmt4WRRbbtMDaGrFvIB9CUynDsD/QVfOPGQe
M8+ZXTXfXnJ6zbz9yOfazRcAAP//AwBQSwMEFAAGAAgAAAAhAHlHPLZCAQAAYQIAABEACAFkb2NQ
cm9wcy9jb3JlLnhtbCCiBAEooAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIySQU/DIBiG
7yb+h4Z7C211UdJ2iZqdXGJizYw3hG9dY6EE0G7/XtputWYePML78vDwhWy5l03wBcbWrcpRHBEU
gOKtqFWVo5dyFd6gwDqmBGtaBTk6gEXL4vIi45ry1sCTaTUYV4MNPElZynWOds5pirHlO5DMRr6h
fLhtjWTOL02FNeMfrAKcELLAEhwTzDHcA0M9EdERKfiE1J+mGQCCY2hAgnIWx1GMf7oOjLR/HhiS
WVPW7qD9m466c7bgYzi197aeil3XRV06aHj/GL+uH5+Hp4a16mfFARWZ4JQbYK41RcXevauCDM82
+wE2zLq1n/W2BnF3mPXOM88b9EcoiMAL0VH/lGzS+4dyhYqExCQkaUiuSpLQ9JqS27f+6l/ne8Fx
Qx4F/kNclPGCEkKTZEY8AYoMn32K4hsAAP//AwBQSwMEFAAGAAgAAAAhAJw8u1iLAQAANAMAABAA
CAFkb2NQcm9wcy9hcHAueG1sIKIEASigAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnJNB
T+MwEIXvSPsfIt+p04IQqhwjBIs4LKJSW/ZsnElj4dqRZ4hafj2TRKXpsnvZnMbznp4+jyfqZrf1
WQsJXQyFmE5ykUGwsXRhU4j16uH8WmRIJpTGxwCF2AOKG/3jTC1SbCCRA8w4ImAhaqJmLiXaGrYG
JywHVqqYtob4mDYyVpWzcB/t+xYCyVmeX0nYEYQSyvPmK1AMifOW/je0jLbjw5fVvmFgrW6bxjtr
iG+pn5xNEWNF2c+dBa/kWFRMtwT7nhztda7k+KiW1ni442BdGY+g5LGhHsF0Q1sYl1CrluYtWIop
Q/fBY5uJ7NUgdDiFaE1yJhBjdbbh0Ne+QUr6d0xvWAMQKsmGodmXY++4dpf6ojdwcWrsAgYQFk4R
V4484HO1MIn+QnwxJu4ZBt4BZ9nxTcd8X6S9NPu3NJCOb9UPivn+IPrlwhuum1W8NwSHiZ821bI2
CUp+pIN+bKhHHnbyXchdbcIGyoPnu9Dtx8vwE+jpbJLz16/Foafkcd31JwAAAP//AwBQSwECLQAU
AAYACAAAACEATwCQPqQBAABXBgAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnht
bFBLAQItABQABgAIAAAAIQC1VTAj9QAAAEwCAAALAAAAAAAAAAAAAAAAAK4DAABfcmVscy8ucmVs
c1BLAQItABQABgAIAAAAIQB/yXraPwEAANMEAAAaAAAAAAAAAAAAAAAAAJoGAAB4bC9fcmVscy93
b3JrYm9vay54bWwucmVsc1BLAQItABQABgAIAAAAIQDlfF5xnwEAAMoCAAAPAAAAAAAAAAAAAAAA
ABkJAAB4bC93b3JrYm9vay54bWxQSwECLQAUAAYACAAAACEA6aYluIIGAABTGwAAEwAAAAAAAAAA
AAAAAADlCgAAeGwvdGhlbWUvdGhlbWUxLnhtbFBLAQItABQABgAIAAAAIQDB+lqtJgEAANYBAAAY
AAAAAAAAAAAAAAAAAJgRAAB4bC93b3Jrc2hlZXRzL3NoZWV0Mi54bWxQSwECLQAUAAYACAAAACEA
fDIUqyYBAADWAQAAGAAAAAAAAAAAAAAAAAD0EgAAeGwvd29ya3NoZWV0cy9zaGVldDMueG1sUEsB
Ai0AFAAGAAgAAAAhAI21V6GsIAAAAGIAABEAAAAAAAAAAAAAAAAAUBQAAHhsL3ZiYVByb2plY3Qu
YmluUEsBAi0AFAAGAAgAAAAhAP58GSyxAgAA4gYAABgAAAAAAAAAAAAAAAAAKzUAAHhsL3dvcmtz
aGVldHMvc2hlZXQxLnhtbFBLAQItABQABgAIAAAAIQCh5waOoQAAAL8AAAAUAAAAAAAAAAAAAAAA
ABI4AAB4bC9zaGFyZWRTdHJpbmdzLnhtbFBLAQItABQABgAIAAAAIQDqgNVDowEAAGQDAAANAAAA
AAAAAAAAAAAAAOU4AAB4bC9zdHlsZXMueG1sUEsBAi0AFAAGAAgAAAAhAMiBPKipAAAA+wAAABAA
AAAAAAAAAAAAAAAAszoAAHhsL2NhbGNDaGFpbi54bWxQSwECLQAUAAYACAAAACEAeUc8tkIBAABh
AgAAEQAAAAAAAAAAAAAAAACKOwAAZG9jUHJvcHMvY29yZS54bWxQSwECLQAUAAYACAAAACEAnDy7
WIsBAAA0AwAAEAAAAAAAAAAAAAAAAAADPgAAZG9jUHJvcHMvYXBwLnhtbFBLBQYAAAAADgAOAIkD
AADEQAAAAAA=

------=_NextPart_000_0043_01CABEEC.7F178E90--

0
helene
3/8/2010 11:23:43 PM
Reply:

Similar Artilces:

cell
Are there any way to add text and a function in the same cell? For example Hello =sum(XX:XX) Try something like ="Hello "&SUM(A1:A10) -- Cordially, Chip Pearson Microsoft MVP - Excel Pearson Software Consulting, LLC www.cpearson.com chip@cpearson.com "danne" <modig123@hotmail.com> wrote in message news:0a7f01c36335$498056f0$a401280a@phx.gbl... > Are there any way to add text and a function in the same > cell? For example Hello =sum(XX:XX) Sure, for example: ="Hello = "&SUM(A1:B1) For more info, try MVP Debra Dalgleish's &...

Macro or Formula needed to search data in cells
Hi I am looking for a way to create a formula/macro to do the following: My worksheet setup: A1:A30000 C1:C5000 01 02 03 04 05 06 07 08 09 10 01 04 05 06 08 09 12 22 23 27 02 03 04 05 06 07 08 09 10 11 01 03 05 06 07 08 09 14 22 32 03 04 05 06 07 08 09 10 11 12 04 05 06 07 08 09 10 11 12 13 etc Each cell contains a 10 number sequence. The range A1:A30000 is my randomly generated sequence. And C1:5000 is my database of archived sequences. If I wish to check if the combination in cell A1 is anywhere in the range C1:5000. I use the formula. =IF(COU...

Validate the format of a number
I need to determine that an entered serial number is valid. It must check that it is 11 characters and follows the format as follows: a letter, followed by a number, followed by 2 letters, followed by 6 numbers, and ending with a letter. For example, the user enters D7PM234567B and the cell next to it would indicate 'valid' or something similar. If 87PM2345674 was entered, it was indicate 'invalid' next to it or something similar to alert the user it is not in the correct format. Thank you very much in advance. Steve This formula =AND(LEN(A1)=11,CODE(...

Insert spaces between pasted values #2
Hi! Is there a way to insert spaces between values that are pasted? For example, i have in rows 1,2,3 values a,b,c and i want to paste them into another list in rows 1,3,5 respectively (with a single-row space between pasted values). Thanx! M I presume you have more than just 3 rows. A general approach would be to use a helper column next to your data and to fill a simple sequence down that column for as much data as you have. Then copy all the numbers that make up that sequence and paste them immediately below the sequence in the same column, so that if you have 200 numbers for example the...

page numbering #2
I'm working on a landscape Excel document...the document will become part of a booklet,and I need the page numbers at the bottom of the page, but in portrait. Any help? ...

Search for data in a column bring all related items in other colum
I have data in the excel sheet with .A column for OrderNo and B Column for items for that Order. A B ORD001 ITEM1 ITEM2 ITEM3 ORD002 ITEM4 ITEM1 ITEM5 There are more than thousand orders.I want search for an Order so that it brings all items with it. I cannot use filter in A column as it doesn't recognise blank cell.So Option to repeat order nos in A for every item involves a lot of data entry. Any Solution ? I'd fill those empty cells in column a with the previous value. And us...

negative values on axes
hi there; this is my first mail here. well my x axes start from -2 and my Y axes data start from -5, I change both to -5 (scale) they are shown (XY scatter dots) as cross, like + sign. what I need: how to change the graph punt the joint axes point from 0 to -5? so the chart shws as usual not like a cross. Best Darius Hi, Change the Values axis crosses at to -5 for both axis. This is an option on the Scale tab of the Format Axis dialog. Cheers Andy Darius wrote: > hi there; > this is my first mail here. well my x axes start from -2 and my Y axes data > start from -5, I chang...

How to export values from XY (Scatter) graf?
Is it possible to export each x and y value from XY (Scatter) graph? ...

Compare cells, update based on Ifs
I need to compare cells to the cell above them and to the right of them. Based on the comparisons I'll need to update the original cell with one of those adjoining cell values. After I finish with one column then I need to repeat the procedure on the column to the LEFT of the original column. I know IF, THEN and ELSE statesments but I don't know VB for Microsoft Office products. Range could be all 65,000+ rows on a workseet Start on ColumnJ, Row2 If ColumnJ, Row2 is Null _ If ColumnK, Row 2 is Not Null _ If ColumnJ, Row 1 is Not Null _ ColumnJ, Row2 Value is ...

If cell value is greater than another cell value, clear contents.
Okay, hopefully this is the last question today! I've found the below formula in one of the posts here, but my brain has completely failed on me and I'm not sure how to adapt it to my requirements. I have a value which is entered by the user after a prompt, that populates in cell G4 in a sheet called 'Lookup'. For arguments sake, the current value is 30/11/09. I have another worksheet, 'Data', which has a column populated with dates (say column B). I'd like a macro that looks in column B on the data sheet, and clears out any dates which are gr...

Why does linked data from blank cells become a zero?
When linking data within the same workbook (to different tabs) any cell that is empty - shows up in the new tab as a ZERO (0).....what am I doing wrong? I want those cells to remain blank. That's just the way it is .. Instead of : =Sheet2!A1 you could use an error trap: =IF(Sheet2!A1="","",Sheet2!A1) Alternatively, we could suppress the display of extraneous zeros in the entire sheet via: Click Tools > Options > View tab > Uncheck "Zero values" > OK -- Rgds Max xl 97 --- GMT+8, 1� 22' N 103� 45' E xdemechanik <at>yahoo<dot&g...

Hide rows with value "Hours"
I would like to toggle rows to hide/unhide based on the value "Hours" in column B. I think filtering is an issue to some blank seperator rows and merged cell headings. There are no merged cells involving Column B. Thanks. Public Sub ProcessData() Const TEST_COLUMN As String = "B" '<=== change to suit Dim i As Long Dim iLastRow As Long With ActiveSheet iLastRow = .Cells(.Rows.Count, TEST_COLUMN).End(xlUp).row For i = 1 To iLastRow .Rows(i).Hidden = .Cells(i, TEST_COLUMN).Value = "Hours" Next i End With ...

How do you ensure that null-valued elements are not serialized?
I am using complex types in order to support serialization/deserialization of floating point numbers, since floating points can't be null. I've seen how to suppress attributes that are "not specified", such as having a float member called Value, and a bool member called ValueSpecified. This instructs the XML Serializer to omit that attribute altogether if it wasn't "Specified". But how can I tell it to omit the XML element altogether? Here's the problem: I deserialize an object that looks like this: <person> <name>Joe<...

how do I find an average number of specific words in a column
I am attempting to calculate a number of specific word occurrences. In example, I have a column with yes in certain cells, and no in the others. How can I display the total number of yes and no occurrences? I am fairly new to Excel and know very little about coding in it. Hi you can use the countif function to return the numbers of "yes" and "no" e.g. =COUNTIF(A1:A100,"yes") will count the number of "yes" answers in the range A1 to A100 likewise, =COUNTIF(A1:A100,"no") will count the number of "no" answers in the same range H...

Dynamic Bar of Pie Chart: Series1 Label & Value Issue
I have created a Bar of Pie chart and everything works great. I even have named ranges on my data so that the bar portion automatically updates when the data changes. However the Series1 Label on the pie itself does not change to reflect the new total so that it is the sum of all the values in the right column below. Does that make sense? I have one series and my data looks like this: Contracts 100 Name1 100 Name2 150 Name3 200 Name4 75 Name5 50 Name6 25 The pie portion has Contracts & Other as labels with the totals of...

Multiple Cell Formats
Is it possible for a column to have more than one format, but for those formats to be similar. Eg. I would like to have a multi-format date column. The format can either be Month-Year (Jan-99) or Year only (1999). (I would even like to have something like Jan/Feb-99, but I can live without that.) Any help would be appreciated. Thanks. Hi With true Excel dates in column A e.g. 01 Feb 07, in column B =A1 Format>Cells>Number>Custom> mmm-yy will give Feb-07 or =TEXT(A1,"mmm-yy") =A1 Format>Cells>Number>Custom> yyyy will give 2007 or =TEXT(A1,"yy...

Maximum number of SMTP addresses per user
Hi we use an antispam filter that using ldap to determine if an email address is valid before it reaches our exchange servers. This is very effective and reduces the ammount of spam we receive. The system does not send bounce backs if an address is not valid. What I have been asked to do is to send find a way to send a message back to the sender when someone emails an address of an employee that has left the company to inform them to contact our customer services department. The only way I can think of doing this is to create a mailbox that has multiple smtp addresses on it that has an...

How do I lock N left hand columns
How do I lock N left hand columns in excel so that when I want to see some right hand columns and slide the columns on the right to the left the locked columns do not move and remain visible? Don J ------------------------------------------------------------------------ With A,B,C visible select D1 and hit Window / Freeze panes. This will freeze A,B,C in view If you hit D2 and do it you will also lock the headers in view (ie Row 1) Whatever cell you select it will freeze to the left and above that cell. -- Regards Ken.........................

MS Query Column Headings and Calculated Fields
I'm using MS Query to pull data from an ODBC data source. Everything works fine and I can extract data just great. I'm wondering, however, calculating some fields with the query. I can't seem to add a column heading without enclosing the heading in quotes. That would normally be fine, but everytime I go to edit the query and extra set of quotes is added to the column heading. Is there any way to get around this? I also would like to know if there is a way to use calculated fields in other calculations. If so, is there any documentation out there on how to do this? Thanks, -...

'Contains Macros' When it doesn't...
Hi, I have a very simple spreadsheet. The only 'advanced' feature it has is a small lookup table that is an external data reference to an Access Database Table. This external reference is set to auto-update on sheet open. Problem is, as part of a failed experiment, I created a macro, then a while later deleted it again, however, even though the sheet now contains no macros(according to Tools->Macro), everytime I open it I get the message 'This contains macros, Enable Macros/Disable Macros/More Info Is this because of the auto-update on the external reference, or do I hav...

Capture initial value of text box
Not sure why I can't seem to get this to work, but here's what I'm trying to do: I have a text box, 'Actual_Due_Date', tied to a field in a table. In the same table is a text box named 'Org_Due_Date'. When the initial value is set in the 'Actual' field, I want to capture and store it permanently in the 'Org' field. I have two forms, a New Project form and an Edit Project form. My thought was to just setup a simple macro in the New Project form in the 'Actual' field that says After Update set the 'Org' field equal to the 'A...

2 Y Axes: Lines and a Stacked Column
Hello, I'm using Excel 2003 SP3 and having trouble with the following... Sample data: X Axis Y Axis1 Y Axis1 Y Axis2 Y Axis2 Y Axis2 Date DataA DataB DataC DataD DataE 1/31/09 4.3 3.6 10% 40% 50% 2/28/09 2.9 1.9 30% 60% 10% 3/31/09 1.2 6.4 15% 10% 75% I need Y Axis1 to be two simple lines and Y Axis2 a stacked column that sums to 100%. Can't figure this out. Please advise... Thanks! Jeff First, clear the cell above the dates,...

Transfer data from Excel col. A to columns B-E in the same sheet
I have an Excel 2003 spreadsheet with only one column of player data: column A. The first three data items in column A are the same for every player: Name, Address and Phone. Every player also has at least one comment but could have any number of comments. Each player’s data is separated from the next by a blank cell in column A. Sometimes, a player’s last few comments are blank resulting in multiple blank cells in column A before the data for the next player starts. I need help writing an Excel 2003 VBA macro to: 1. Copy just the player’s name, but not the Name: label, to c...

Delete records when certain records have duplicate column data
Hi, I'm new to excel. I want to delete (sort of) duplicate records. My spreadsheet has many columns. My spreadsheet has many records I want to delete records where the data in just a few columns is the same in multiple records. (e.g. if the values in columns "A" "B" "D" "F" in any record is duplicated in multiple rows ..delete all matching records/rows. A= house number B= street name D=apt number F=city Bonus points: Can a macro/button be created that will allow me to load a spreadsheet and then somehow run the above filter/function on the ...

Is there an add-in that will lock the cells like later versions of Excel?
I'm using 97 and for 99.9% of everything I do I works fine except I can't lock cell format so there can only be data entry. I would be nice if I could do that. Marc Hi Marc, Can you be more specific about what you want and don't want. "Marc" <mcnr(N_O-S_P_A_M)@mindspring.com> wrote in message news:QThPf.1161$sL2.501@newsread2.news.atl.earthlink.net... > I'm using 97 and for 99.9% of everything I do I works fine except I can't > lock cell format so there can only be data entry. I would be nice if I > could do that. > > Marc > > ...